• 55.00 KB
  • 2021-11-10 发布

二次函数与一元二次方程教案一

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2.8二次函数与一元二次方程(一)‎ 教学目标 ‎(一)教学知识点 ‎1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.‎ ‎2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.‎ ‎3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.‎ ‎(二)能力训练要求 ‎1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.‎ ‎2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.‎ ‎3.通过学生共同观察和讨论,培养大家的合作交流意识.‎ ‎(三)情感与价值观要求 ‎1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.‎ ‎2.具有初步的创新精神和实践能力.‎ 教学重点 ‎1.体会方程与函数之间的联系.‎ ‎2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.‎ ‎3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.‎ 教学难点 ‎1.探索方程与函数之间的联系的过程.‎ ‎2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.‎ 教学方法 讨论探索法.‎ 教具准备 投影片二张 第一张:(记作§2.8.1A)‎ 第二张:(记作§2.8.1B)‎ 5‎ 教学过程 Ⅰ.创设问题情境,引入新课 ‎[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.‎ 现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.‎ Ⅱ.讲授新课 一、例题讲解 投影片:(§2.8.1A)‎ 我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么 ‎(1)h与t的关系式是什么?‎ ‎(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.‎ ‎[师]请大家先发表自己的看法,然后再解答.‎ ‎[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.‎ ‎(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.‎ 还可以观察图象得到.‎ ‎[师]很好.能写出步骤吗?‎ ‎[生]解:(1)∵h=-5t2+v0t+h0,‎ 当v0=40,h0=0时,‎ h=-5t2+40t.‎ 5‎ ‎(2)从图象上看可知t=8时,小球落地或者令h=0,得:‎ ‎-5t2+40t=0,‎ 即t2-8t=0.‎ ‎∴t(t-8)=0.‎ ‎∴t=0或t=8.‎ t=0时是小球没抛时的时间,t=8是小球落地时的时间.‎ 二、议一议 投影片:(§2.8.1B)‎ 二次函数①y=x2+2x,‎ ‎②y=x2-2x+1,‎ ‎③y=x2-2x+2的图象如下图所示.‎ ‎(1)每个图象与x轴有几个交点?‎ ‎(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?‎ ‎(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?‎ ‎[师]还请大家先讨论后解答.‎ ‎[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.‎ ‎(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.‎ ‎(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;‎ 二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2‎ 5‎ ‎-2x+2=0没有实数根.‎ 由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.‎ ‎[师]大家总结得非常棒.‎ 二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.‎ 三、想一想 在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?‎ ‎[师]请大家讨论解决.‎ ‎[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有 ‎-5t2+40t=60,‎ t2-8t+12=0,‎ ‎∴t=2或t=6.‎ 因此当小球离开地面2秒和6秒时,高度都是60m.‎ Ⅲ.课堂练习 随堂练习(P67)‎ Ⅳ.课时小结 本节课学了如下内容:‎ ‎1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.‎ ‎2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.‎ Ⅴ.课后作业 习题2.9‎ 板书设计 ‎§2.8.1 二次函数与一元二次方程(一)‎ 一、1.例题讲解(投影片§2.8.1A)‎ ‎2.议一议(投影片§2.8.1B)‎ 5‎ ‎3.想一想 二、课堂练习 随堂练习 三、课时小结 四、课后作业 备课资料 思考、探索、交流 把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?‎ 解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则 S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.‎ 即当x=25时,S最大=625.‎ ‎(2)S正方形=252=625.‎ ‎(3)∵正三角形的边长为m,高为m,‎ ‎∴S三角形==≈481(m2).‎ ‎(4)∵2πr=100,∴r=.‎ ‎∴S圆=πr2=π·()2=π·=≈796(m2).‎ 所以圆的面积最大.‎ 5‎