- 51.00 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
21.2.1 直接开平方法解一元一次方程
年级:九年级 科目:数学 课型:新授
执笔: 审核:
备课时间: 上课时间:
教学目标
1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
2、提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
【课前预习】
导学过程
阅读教材部分,完成以下问题
一桶某种油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部表面,你能算出盒子的棱长吗?
我们知道x2=25,根据平方根的意义,直接开平方得x=±5,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?
计算:用直接开平方法解下列方程:
(1)x2=8 (2)(2x-1)2=5 (3)x2+6x+9=2
4
(4)4m2-9=0 (5)x2+4x+4=1 (6)3(x-1)2-9=108
解一元二次方程的实质是: 把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
归纳:如果方程能化成 的形式,那么可得
【课堂活动】
活动1、预习反馈
活动2、例习题分析
例1用直接开平方法解下列方程:
(1)(3x+1)2=7 (2)y2+2y+1=24 (3)9n2-24n+16=11
练习:
(1)2x2-8=0 (2)9x2-5=3 (3)(x+6)2-9=0
【课堂练习】:
活动3、知识运用
1、用直接开平方法解下列方程:
(1)3(x-1)2-6=0 (2)x2-4x+4=5 (3)9x2+6x+1=4
4
(4)36x2-1=0 (5)4x2=81 (6)(x+5)2=25
(7)x2+2x+1=4
归纳小结
应用直接开平方法解形如 ,那么可得 达到降次转化之目的.
【课后巩固】
一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2
2.方程3x2+9=0的根为( ).
A.3 B.-3 C.±3 D.无实数根
3.用配方法解方程x2-x+1=0正确的解法是( ).
A.(x-)2=,x=±
B.(x-)2=-,原方程无解
C.(x-)2=,x1=+,x2=
D.(x-)2=1,x1=,x2=-
二、填空题
1.若8x2-16=0,则x的值是_________.
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
4
3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______.
4.用直接开平方法解下列方程:
(1)(2-x)2-81=0 (2)2(1-x)2-18=0 (3)(2-x)2=4
5.解关于x的方程(x+m)2=n.
6、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.
(1)鸡场的面积能达到180m2吗?能达到200m吗?
(2)鸡场的面积能达到210m2吗?
7.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?
4