- 337.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
定积分
一、知识点与方法:
1、定积分的概念
设函数在区间上连续,用分点把区间 等分成个小区间,在每个小区间上取任一点作和式(其中为小区间长度),把即时,和式的极限叫做函数在区间上的定积分,记作:,即=。
这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式。
(1)定积分的几何意义:当函数在区间上恒为正时,定积分的几何意义是以曲线为曲边的曲边梯形的面积。
(2)定积分的性质
①(k为常数);②;
③(其中。
2、微积分基本定理
如果是区间上的连续函数,并且,那么:
3、定积分的简单应用
(1) 定积分在几何中的应用:求曲边梯形的面积由三条直线,轴及一条曲线围成的曲边梯的面积。
如果图形由曲线y1=f1(x),y2=f2(x)(不妨设f1(x)≥f2(x)≥0),及直线x=a,x=b(a