- 362.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
www.ks5u.com
第8节 曲线与方程
考试要求 1.了解方程的曲线与曲线的方程的对应关系;2.了解解析几何的基本思想和利用坐标法研究曲线的简单性质;3.能够根据所给条件选择适当的方法求曲线的轨迹方程.
知 识 梳 理
1.曲线与方程的定义
一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.
2.求动点的轨迹方程的基本步骤
[常用结论与微点提醒]
1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.
2.曲线的交点与方程组的关系:
(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;
(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.
诊 断 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( )
(2)方程x2+xy=x的曲线是一个点和一条直线.( )
(3)动点的轨迹方程和动点的轨迹是一样的.( )
(4)方程y=与x=y2表示同一曲线.( )
解析 对于(2),由方程得x(x+y-1)=0,即x=0或x+y-1=0,所以方程表示两条直线,错误;对于(3),前者表示方程,后者表示曲线,错误;对于(4),曲线y=是曲线x=y2的一部分,错误.
答案 (1)√ (2)× (3)× (4)×
2.(老教材选修2-1P37A2改编)已知M(-1,0),N(1,0),|PM|-|PN|=2,则动点P的轨迹是( )
A.双曲线 B.双曲线左支
C.一条射线 D.双曲线右支
解析 由于|PM|-|PN|=|MN|,所以A,B,D不正确,应为以N为端点,沿x轴正向的一条射线.
答案 C
3.(老教材选修2-1P37A1改编)已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则点P的轨迹方程是________.
解析 由角的平分线性质定理得|PA|=2|PB|,设P(x,y),则=2,整理得(x-2)2+y2=4(y≠0).
答案 (x-2)2+y2=4(y≠0)
4.(2019·广州调研)方程(2x+3y-1)(-1)=0表示的曲线是( )
A.两条直线 B.两条射线
C.两条线段 D.一条直线和一条射线
解析 原方程可化为或-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条射线和一条直线.
答案 D
5.已知点F,直线l:x=-,点B是l上的动点,若过点B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是( )
A.双曲线 B.椭圆
C.圆 D.抛物线
解析 由已知|MF|=|MB|,根据抛物线的定义知,点M的轨迹是以点F为焦点,直线l为准线的抛物线.
答案 D
6.已知点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线的中点的轨迹方程是________________.
解析 设AP的中点坐标为(x,y),则P(2x,2y+1),由点P在曲线上,得2·(2x)2-(2y+1)=0,即y=4x2-.
答案 y=4x2-
考点一 直接法求轨迹方程
【例1】 (1)已知A(-1,0),B(1,0)两点,过动点M作x轴的垂线,垂足为N,若2=λ·,则当λ<0时,动点M的轨迹为( )
A.圆 B.椭圆
C.双曲线 D.抛物线
(2)(2020·西安调研)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-.则动点P的轨迹方程为________________.
解析 (1)设M(x,y),则N(x,0),所以2=y2,λ·=λ(x+1,0)·(1-x,0)=λ(1-x2),所以y2=λ(1-x2),即λx2+y2=λ,变形为x2+=1,所以当λ<0时,动点M的轨迹为双曲线.
(2)因为点B与点A(-1,1)关于原点O对称,所以点B的坐标为(1,-1).
设点P的坐标为(x,y),由题意得·=-,化简得x2+3y2=4(x≠±1) .故动点P的轨迹方程为x2+3y2=4(x≠±1.)
答案 (1)C (2)x2+3y2=4(x≠±1)
规律方法 利用直接法求轨迹方程
(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简.
(2)运用直接法应注意的问题:①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的;②若方程的化简过程是恒等变形,则最后的验证可以省略.
【训练1】 与y轴相切并与圆C:x2+y2-6x=0也外切的圆的圆心的轨迹方程为________.
解析 若动圆在y轴右侧,设与y轴相切,且与圆x2+y2-6x=0外切的圆的圆心为P(x,y)(x>0),则半径长为|x|,因为圆x2+y2-6x=0的圆心为(3,0),所以=|x|+3,则y2=12x(x>0),
若动圆在y轴左侧,则y=0,即圆心的轨迹方程为y2=12x(x>0)或y=0(x<0).
答案 y2=12x(x>0)或y=0(x<0)
考点二 定义法求轨迹方程 典例迁移
【例2】 (经典母题)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求C的方程.
解 由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.
因为圆P与圆M外切并且与圆N内切,
所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4>|MN|=2.
由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为+=1(x≠-2).
【迁移1】 将本例的条件“动圆P与圆M外切并且与圆N内切”改为“动圆P与圆M、圆N都外切”,则圆心P的轨迹方程为________.
解析 由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R,因为圆P与圆M,N都外切,所以|PM|-|PN|=(R+r1)-(R+r2)=r1-r2=-2,即|PN|-|PM|=2,又|MN|=2,所以点P的轨迹方程为y=0(x<-2).
答案 y=0(x<-2)
【迁移2】 在本例中,若动圆P过圆N的圆心,并且与直线x=-1相切,则圆心P的轨迹方程为________.
解析 由于点P到定点N(1,0)和定直线x=-1的距离相等,所以根据抛物线的定义可知,点P的轨迹是以N(1,0)为焦点,以x轴为对称轴、开口向右的抛物线,故其方程为y2=4x.
答案 y2=4x
规律方法 定义法求曲线方程的两种策略
(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.
(2)定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.
【训练2】 (2020·豫北名校联盟联考)已知△ABC中,AB=2,且sin A(1-2cos B)+sin B(1-2cos A)=0,以边AB的中垂线为x轴,以AB所在的直线为y轴,建立平面直角坐标系,则动点C的轨迹方程为________.
解析 在△ABC中,由sin A(1-2cos B)+sin B(1-2cos A)=0得sin A+sin B=2sin(A+B)=2sin C,由正弦定理得+=2·(R为△ABC外接圆半径),可得|CB|+|CA|=2|AB|>|AB|.∴点C的轨迹是以A,B为焦点的椭圆(除y轴上的点),其中2a=4,2c=2,即a=2,c=1,∴b2=a2-c2=3,故点C的轨迹方程为+=1(x≠0).
答案 +=1(x≠0)
考点三 相关点(代入)法求轨迹方程
【例3】 (1)(2020·银川模拟)动点A在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是________.
(2)设F(1,0),M点在x轴上,P点在y轴上,且=2,⊥,当点P在y轴上运动时,点N的轨迹方程为________.
解析 (1)设中点M(x,y),由中点坐标公式,可得A(2x-3,2y),因为点A在圆上,将点A的坐标代入圆的方程,所以轨迹方程为(2x-3)2+4y2=1.
(2)设M(x0,0),P(0,y0),N(x,y),⊥,=(x0,-y0),=(1,-y0),所以(x0,-y0)·(1,-y0)=0,所以x0+y=0.由=2得(x-x0,y)=2(-x0,y0),所以即所以-x+=0,即y2=4x.故所求点N的轨迹方程是y2=4x.
答案 (1)(2x-3)2+4y2=1 (2)y2=4x
规律方法 “相关点法”的基本步骤
(1)设点:设被动点坐标为(x,y),主动点坐标为(x0,y0).
(2)求关系式:求出两个动点坐标之间的关系式
(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程.
【训练3】 (2020·长沙月考)如图所示,动圆C1:x2+y2=t2,13).
答案 -=1(x>3)
8.直线+=1与x,y轴交点的中点的轨迹方程是________.
解析 直线+=1与x,y轴的交点为A(a,0),B(0,2-a),设AB的中点为M(x,y),则x=,y=1-,消去a,得x+y=1.因为a≠0且a≠2,所以x≠0且x≠1.
答案 x+y=1(x≠0且x≠1)
三、解答题
9.已知坐标平面上动点M(x,y)与两个定点P(26,1),Q(2,1),且|MP|=5|MQ|.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中轨迹为C,过点N(-2,3)的直线l被C所截得的线段长度为8,求直线l的方程.
解 (1)由题意,得=5,即=5,
化简,得x2+y2-2x-2y-23=0,
所以点M的轨迹方程是(x-1)2+(y-1)2=25.
轨迹是以(1,1)为圆心,以5为半径的圆.
(2)当直线l的斜率不存在时,l:x=-2,
此时所截得的线段长度为2=8,
所以l:x=-2符合题意.
当直线l的斜率存在时,设l的方程为y-3=k(x+2),
即kx-y+2k+3=0,圆心(1,1)到直线l的距离d=,
由题意,得+42=52,解得k=.
所以直线l的方程为x-y+=0,即5x-12y+46=0.
综上,直线l的方程为x=-2或5x-12y+46=0.
10.在平面直角坐标系中,已知A1(-,0),A2(,0),P(x,y),M(x,1),N(x,-2),若实数λ使得λ2·=·(O为坐标原点).
求P点的轨迹方程,并讨论P点的轨迹类型.
解 =(x,1),=(x,-2),
=(x+,y),=(x-,y).
因为λ2·=·,
所以(x2-2)λ2=x2-2+y2,
整理得(1-λ2)x2+y2=2(1-λ2)为点P的轨迹方程.
(1)当λ=±1时,方程为y=0,轨迹为一条直线;
(2)当λ=0时,方程为x2+y2=2,轨迹为圆;
(3)当λ∈(-1,0)∪(0,1)时,方程为+=1,轨迹为中心在原点,焦点在x轴上的椭圆;
(4)当λ∈(-∞,-1)∪(1,+∞)时,方程为-=1,轨迹为中心在原点,焦点在x轴上的双曲线.
B级 能力提升
11.如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是( )
A.直线 B.抛物线
C.椭圆 D.双曲线的一支
解析 可构造如图所示的圆锥.母线与中轴线夹角为30°,然后用平面α去截,使直线AB与平面α的夹角为60°,则截口为P的轨迹图形,由圆锥曲线的定义可知,P的轨迹为椭圆,故选C.
答案 C
12.(2019·北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是( )
A.① B.② C.①② D.①②③
解析 曲线的方程x2+y2=1+|x|y可看成关于y的一元二次方程y2-|x|y+x2-1=0,由题图可知该方程必有两个不相等的实根,∴Δ=|x|2-4(x2-1)>0,∴x2<,满足条件的整数x可取-1,0,1.当x=-1时,y=0或1,∴曲线C经过的整点有(-1,0),(-1,1);当x=0时,y=-1或1,∴曲线C经过的整点有(0,-1),(0,1);当x=1时,y=0或1,∴曲线C经过的整点有(1,0),(1,1).故曲线C恰好经过6个整点,①正确;∵x2+y2=1+|x|y≤1+,∴x2+y2≤2,∴≤ ,当且仅当|x|=y,即或时取等号,则曲线上的点到原点的最大距离为,故②正确;顺次连接(-1,0),(-1,1),(0,1),(1,1),(1,0),(0,-1),(-1,0),所围成的区域如图中阴影部分所示,其面积为3,显然曲线C所围成的“心形”区域的面积要大于3,故③不正确.故选C.
答案 C
13.已知过点A(-3,0)的直线与x=3相交于点C,过点B(3,0)的直线与x=-3相交于点D,若直线CD与圆x2+y2=9相切,则直线AC与BD的交点M的轨迹方程为________.
解析 设点M(x,y),C(3,m),D(-3,n),则直线CD的方程为(m-n)x-6y+3(m+n)=0,因为直线CD与圆x2+y2=9相切,所以=3,所以mn=9,又直线AC与BD的交点为M,
所以解得所以-=9,
所以点M的轨迹方程为+=1(y≠0).
答案 +=1(y≠0)
14.如图,抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B两点,且点A的横坐标为2.过劣弧AB上动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,l1与l2相交于点M.
(1)求p的值;
(2)求动点M的轨迹方程.
解 (1)由点A的横坐标为2及点A在第一象限,可得点A的坐标为(2,2),代入y2=2px,解得p=1.
(2)设C,D,y1≠0,y2≠0,切线l1的斜率为k,则切线l1:y-y1=k,代入y2=2x,
得ky2-2y+2y1-ky=0,
由Δ=0解得k=,
所以l1的方程为y=x+,
同理l2的方程为y=x+.
联立,得解得
易知CD的方程为x0x+y0y=8,
其中x0,y0满足x+y=8,x0∈[2,2],
联立,得即x0y2+2y0y-16=0,
则代入
可得M(x,y)满足可得
代入x+y=8,并化简,得-y2=1,
考虑到x0∈[2,2],知x∈[-4,-2],
所以动点M的轨迹方程为-y2=1,x∈[-4,-2].
C级 创新猜想
15.(多选题)曲线C是平面内与两个定点F1(-2,0)和F2(2,0)的距离的积等于常数a2(a2>4)的点的轨迹,则下列结论正确的有( )
A.曲线C过坐标原点
B.曲线C关于x轴对称
C.曲线C关于坐标原点对称
D.若点P在曲线C上,则△F1PF2的面积不大于a2
解析 设动点坐标为(x,y),由已知得·=a2,即[(x+2)2+y2]·[(x-2)2+y2]=a4(a2>4),代入原点验证,方程不成立,故A错;把方程中的y被-y代换,方程不变,故B正确;把方程中的x被-x代换,y被-y代换,方程也不变,故C正确;因为S△F1PF2=|PF1||PF2|sin∠F1PF2≤|PF1||PF2|=a2,即△F1PF2的面积不大于a2,故D正确.
答案 BCD
相关文档
- 高中数学:第一章《计数原理》测试(2)(2021-06-108页
- 高中数学必修1教案:第二章(第22课时)2021-06-105页
- 高中数学必修2教案6_示范教案(2_2_32021-06-109页
- 高中数学人教a版选修1-1第二章圆锥2021-06-109页
- 高中数列知识大总结2021-06-1031页
- 高中数学(人教版a版必修三)配套课时2021-06-104页
- 高中数学必修2教案:2_2_1 直线与平2021-06-102页
- 上海教育高中数学二下点到直线的距2021-06-106页
- 高中数学人教a版必修二 第四章 圆2021-06-105页
- 数学文卷·2018届宁夏银川市高三42021-06-1011页