- 130.50 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第38讲 数列求和
1.已知数列{an}的前n项和Sn=n3,则a6+a7+a8+a9等于(C)
A.729 B.387
C.604 D.854
a6+a7+a8+a9=S9-S5=93-53=604.
2.已知数列{an}的通项公式an=log2(n∈N*),设其前n项和为Sn,则使Sn<-5成立的正整数n(A)
A.有最小值63 B.有最大值63
C.有最小值31 D.有最大值31
Sn=log2(···…·)=log2
<-5,
所以<2-5,所以n+2>26,n>62,所以n≥63.
3.(2017·湖南湘潭三模)已知Tn为数列{}的前n项和,若m>T10+1013恒成立,则整数m的最小值为(C)
A.1026 B.1025
C.1024 D.1023
因为=1+()n,
所以Tn=n+++…+=n+1-.
所以T10+1013=11-+1013=1024-.
又m>T10+1023恒成立,所以整数m的最小值为1024.
4.(2017·广州市二测)数列{an}满足a2=2,an+2+(-1)n+1an=1+(-1)n(n∈N*),Sn为数列{an}的前n项和,则S100=(B)
A.5100 B.2550
C.2500 D.2450
当n为奇数时,an+2+an=0,
即a3+a1=a5+a3=…=a99+a97=0.
当n为偶数时,an+2-an=2.
即a4-a2=a6-a4=…=a100-a98=2.
所以S100=a1+a2+a3+…+a100
=(a1+a3+…+a99)+(a2+a4+…+a100)
=a2+a4+a6+…+a100
=2+4+6+…+a100
=2×50+×2=2550.
5.数列{an}的通项公式是an=,若Sn=10,则n= 120 .
an==-,
所以Sn=-1=10,所以n=120.
6. (2016·广州市综合测试(二))设数列{an}的前n项和为Sn, 若a2=12, Sn=kn2-1(n∈N*), 则数列{}的前n项和为 .
由题意知,a2=S2-S1=4k-1-(k-1)=3k=12,
所以k=4.
所以Sn=4n2-1,则==(-),
则数列{}的前n项和为
++…+=(1-+-+…+-)=(1-)=.
7.Sn为数列{an}的前n项和.已知an>0,a+2an=4Sn+3.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和.
(1)由a+2an=4Sn+3,
可得a+2an+1=4Sn+1+3.
可得a-a+2(an+1-an)=4an+1,
即2(an+1+an)=a-a=(an+1+an)(an+1-an),
由于an>0,可得an+1-an=2.
又a+2a1=4a1+3,解得a1=-1(舍去)或a1=3.
所以{an}是首项为3,公差为2的等差数列.
所以所求通项公式为an=2n+1.
(2)由an=2n+1可知,
bn===(-),
设数列{bn}的前n项和为Tn,则
Tn=b1+b2+…+bn
=[(-)+(-)+…+(-)]=.
8.设f(x)=,则f()+f()+…+f()的值为(B)
A.999 B.
C.1000 D.
因为f(x)=,所以f(1-x)==,
所以f(x)+f(1-x)=1.
设S=f()+f()+…+f(),
S=f()+f()+…+f(),
上述两式相加得2S=1×1999=1999,所以S=.
9.(2015·江苏卷)设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列{}的前10项和为 .
由题意有a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2).以上各式相加,得
an-a1=2+3+…+n==.
又因为a1=1,所以an=(n≥2).
因为当n=1时也满足此式,所以an=(n∈N*).
所以==2(-).
所以S10=2(-+-+…+-)
=2(1-)=.
10.(2016·山东卷)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(1)求数列{bn}的通项公式;
(2)令cn=,求数列{cn}的前n项和Tn.
(1)由题意知当n≥2时,an=Sn-Sn-1=6n+5.
当n=1时,a1=S1=11,符合上式.所以an=6n+5.
设数列{bn}的公差为d.
由即解得
所以bn=3n+1.
(2)由(1)知cn==3(n+1)·2n+1.
又Tn=c1+c2+…+cn,
得Tn=3×[2×22+3×23+…+(n+1)×2n+1],
2Tn=3×[2×23+3×24+…+(n+1)×2n+2],
两式作差,得
-Tn=3×[2×22+23+24+…+2 n+1-(n+1)×2n+2]
=3×[4+-(n+1)×2n+2]
=-3n·2n+2,
所以Tn=3n·2n+2.