- 704.00 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.2 充分条件、必要条件、充要条件
学 习 目 标
核 心 素 养
1.结合具体实例,理解充分条件、必要条件、充要条件的意义.(重点、难点)
2.会求(判断)某些问题成立的充分条件、必要条件、充要条件.(重点)
3.理解性质定理、判定定理和定义与充分条件和必要条件之间的关系.(重点)
4.能够利用命题之间的关系判定充要关系或进行充要条件的证明.(难点)
1.通过充要条件的判断,提升逻辑推理素养.
2.借助充要条件的应用,培养数学运算素养.
“充分”“必要”是我们日常生活中经常使用的词语,你知道下列语句中的这两个词分别表达的是什么意思吗?
(1)习近平总书记在2020年3月26日出席二十国集团领导人应对新冠肺炎特别峰会上讲话中指出:“只要我们同舟共济、守望相助,就一定能够彻底战胜疫情,迎来人类发展更加美好的明天!”.
(2)“文学不只是知识,同时也是一种能力,写作对于一个文学系的学生而言是一种必要的素质”(《人民日报》).
1.充分条件与必要条件
命题真假
“若p,则q”是真命题
“若p,则q”是假命题
推出关系
p⇒q
pq
条件关系
p是q的充分条件
q是p的必要条件
p不是q的充分条件
q不是p的必要条件
“p⇒q”含义的理解:一方面,一旦p成立,q一定也成立.即p对q的成立是充分的;另一方面,如果q不成立,那么p一定不成立;即q对p的成立是充分的.
思考1:(1)p是q的充分条件与q是p的必要条件所表示的推出关系是否相同?
(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?
[提示] (1)相同,都是p⇒q.(2)等价.
- 7 -
2.充要条件
(1)如果p⇒q,且q⇒p,那么称p是q的充分必要条件,简称p是q的充要条件.
为了方便起见,p是q的充要条件,就记作p⇔q,称为“p与q等价”或“p等价于q”“⇒”和“⇔”都具有传递性,即
①如果p⇒q,q⇒s,则p⇒s;
②如果p⇔q, q⇔s,则p⇔s;
(2)若p⇒q,但qp,则称p是q的充分不必要条件.
(3)若q⇒p,但pq,则称p是q的必要不充分条件.
(4)若pq,且qp,则称p是q的既不充分也不必要条件.
思考2:(1)若p是q的充要条件,则命题p和q是两个相互等价的命题,这种说法对吗?
(2)“p是q的充要条件”与“p的充要条件是q”的区别在哪里?
[提示] (1)正确.若p是q的充要条件,则p⇔q,即p等价于q.
(2)①p是q的充要条件说明p是条件,q是结论.
②p的充要条件是q说明q是条件,p是结论.
3.性质定理和判定定理与充分必要条件的关系
(1)性质定理是某类对象具有的具体特征,所以性质定理具有“必要性”;
(2)判定定理是指对象只要具有某具体的特征,就一定有该对象的所有特征,所以判定定理具有“充分性”;
(3)数学中的定义既可以作为判定,也可以作为性质.即数学中的定义具有“充要性”.
1.“同位角相等”是“两直线平行”的( )
A.充分不必要条件
B.必要不充分条件
C.既是充分条件,也是必要条件
D.既不充分也不必要条件
[答案] C
2.使x>3成立的一个充分条件是( )
A.x>4 B.x>0
C.x>2 D.x<2
A [只有x>4⇒x>3,其他选项均不可推出x>3.]
3.使x>3成立的一个必要不充分条件是( )
A.x>4 B.x<4
C.x>2 D.x<2
C [因为x>3⇒x>2,x>2x>3,所以选C.]
- 7 -
4.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
A [因为x≥2且y≥2⇒x2+y2≥4, x2+y2≥4x≥2且y≥2,如x=-2,y=1,所以“x≥2且y≥2”是“x2+y2≥4”的充分不必要条件.]
充分条件、必要条件的判断
【例1】 指出下列各题中p是q的什么条件.
(1)p:x-3=0,q:(x-2)(x-3)=0.
(2)p:两个三角形相似,q:两个三角形全等.
(3)p:a>b,q:ac>bc.
[解] (1)x-3=0⇒(x-2)(x-3)=0,但(x-2)(x-3)=0x-3=0,故p是q的充分不必要条件.
(2)两个三角形相似两个三角形全等,但两个三角形全等⇒两个三角形相似,故p是q的必要不充分条件.
(3)a>bac>bc,且ac>bca>b,
故p是q的既不充分也不必要条件.
定义法判断充分条件、必要条件
(1)确定谁是条件,谁是结论.
(2)尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件.
(3)尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.
1.指出下列各组命题中,p是q的什么条件.
(1)p:四边形的对角线相等,q:四边形是平行四边形.
(2)p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0.
[解] (1)因为四边形的对角线相等四边形是平行四边形,四边形是平行四边形四边形的对角线相等,
所以p是q的既不充分也不必要条件.
(2)因为(x-1)2+(y-2)2=0⇒x=1且y=2⇒(x-1)(y-2)=0,而(x-1)(y-2)=0(x-1)2+(y-2)2=0,所以p是q的充分不必要条件.
- 7 -
充分条件、必要条件、充要条件的应用
[探究问题]
1.记集合A={x|p(x)},B={x|q(x)},若p是q的充分不必要条件,则集合A,B的关系是什么?若p是q的必要不充分条件呢?
[提示] 若p是q的充分不必要条件,则AB,若p是q的必要不充分条件,则BA.
2.记集合M={x|p(x)},N={x|q(x)},若M⊆N,则p是q的什么条件?若N⊆M,M=N呢?
[提示] 若M⊆N,则p是q的充分条件,若N⊆M,则p是q的必要条件,若M=N,则p是q的充要条件.
【例2】 已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若p是q的充分不必要条件,则实数m的取值范围为 .
[思路点拨]
{m|m≥9} [因为p是q的充分不必要条件,所以p⇒q且qp.
即{x|-2≤x≤10}是{x|1-m≤x≤1+m,m>0}的真子集,所以或解得m≥9.
所以实数m的取值范围为{m|m≥9}.]
1.本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.
[解] 因为p是q的必要不充分条件,所以q⇒p,且pq.
则{x|1-m≤x≤1+m,m>0}{x|-2≤x≤10},
所以,解得00”是“x≠0”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
A [由“x>0”⇒“x≠0”,反之不一定成立.因此“x>0”是“x≠0”的充分不必要条件.]
3.已知:A={x|x=2n,n∈Z},B={x|x=4n,n∈Z}, x,y∈Z,则x,y∈A是x+y∈B的 条件.
(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)
既不充分又不必要 [若x=2,y=4, 则x+y=6B;因为1+3=4∈B,但1,3A.]
4.已知p:实数x满足3a
相关文档
- 高中数学必修3同步练习:第一章算法2021-06-159页
- 人教A高中数学必修三 用样本的频2021-06-1511页
- 高中数学 3_1_5课时同步练习 新人2021-06-154页
- 2019-2020学年高中数学课时作业122021-06-156页
- 人教版高中数学选修2-3练习:第一章12021-06-156页
- 高中数学:二《平行线分线段成比例定2021-06-153页
- 高中数学选修2-2教学课件第三章 2_2021-06-1542页
- 高中数学北师大版新教材必修一课时2021-06-1511页
- 高中数学模块综合测评二新人教A版2021-06-158页
- 高中数学 1_3_1单调性与最大(小)值同2021-06-155页