- 234.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题层级快练(三十二)
1.(2017·潍坊二模)设a,b是非零向量,若函数f(x)=(xa+b)·(a-xb)的图像是一条直线,则必有( )
A.a⊥b B.a∥b
C.|a|=|b| D.|a|≠|b|
答案 A
解析 f(x)=(xa+b)·(a-xb)的图像是一条直线,即f(x)的表达式是关于x的一次函数或常函数.而(xa+b)·(a-xb)=-x2a·b+(a2-b2)x+a·b,故a·b=0,即a⊥b,故应选A.
2.已知向量a=(1,sinθ),b=(1,cosθ),则|a-b|的最大值为( )
A.1 B.
C. D.2
答案 B
解析 ∵a=(1,sinθ),b=(1,cosθ),∴a-b=(0,sinθ-cosθ).
∴|a-b|==.
∴|a-b|最大值为.故选B.
3.已知A,B是圆心为C半径为的圆上两点,且||=,则·等于( )
A.- B.
C.0 D.
答案 A
解析 由于弦长|AB|=与半径相同,则∠ACB=60°⇒·=-·=
-||·||·cos∠ACB=-··cos60°=-.
4.(2017·保定模拟)若O是△ABC所在平面内一点,且满足|-|=|+-
2|,则△ABC的形状是( )
A.等腰三角形 B.直角三角形
C.等腰直角三角形 D.等边三角形
答案 B
解析 +-2=-+-=+,-==-,∴|+|=|-|⇒|+|2=|-|2⇒·=0,∴三角形为直角三角形,故选B.
5.(2015·山东,理)已知菱形ABCD的边长为a,∠ABC=60°,则·=( )
A.-a2 B.-a2
C.a2 D.a2
答案 D
解析 在菱形ABCD中,=,=+,所以·=(+)·=·+·=a2+a×a×cos60°=a2+a2=a2.
6.(2017·银川调研)若平面四边形ABCD满足+=0,(-)·=0,则该四边形一定是( )
A.直角梯形 B.矩形
C.菱形 D.正方形
答案 C
解析 由+=0得平面四边形ABCD是平行四边形,由(-)·=0得·=0,故平行四边形的对角线垂直,所以该四边形一定是菱形,故选C.
7.如图所示,在△ABC中,AD⊥AB,= ,||=1,则·=( )
A.2 B.
C. D.
答案 D
解析 ·=(+)·=·+·=·= ·=
||||cos∠BDA=||2=.
8.在△ABC中,=a,=b,=c,且a·b=b·c=c·a,则△ABC的形状是( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等边三角形
答案 D
解析 因a,b,c均为非零向量,且a·b=b·c,得b·(a-c)=0⇒b⊥(a-c).
又a+b+c=0⇒b=-(a+c),∴[-(a+c)]·(a-c)=0⇒a2=c2,得|a|=|c|.
同理|b|=|a|,∴|a|=|b|=|c|.故△ABC为等边三角形.
9.(2016·天津)已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则·的值为( )
A.- B.
C. D.
答案 B
解析 如图以直线AC为x轴,以A为坐标原点建立平面直角坐标系,则A(0,0),C(1,0),B(,),F(1,),
∴=(1,),=(,-).∴·=-=,选B.
10.(2017·安徽师大附中月考)在平面直角坐标系xOy中,已知向量与关于y轴对称,向量a=(1,0),则满足不等式2+a·≤0的点A(x,y)的集合用阴影表示为( )
答案 B
解析 ∵A(x,y),向量与关于y轴对称,∴B(-x,y),=(-2x,0).∵2+a·≤0,∴x2+y2-2x=(x-1)2+y2-1≤0,故满足要求的点在以(1,0)为圆心,1为半径的圆上以及圆的内部.故选B.
11.(2016·四川)在平面内,定点A,B,C,D满足||=||=||,·=·=·=-2,动点P,M满足||=1,=,则||2的最大值是( )
A. B.
C. D.
答案 B
解析 由||=||=||知,D为△ABC的外心.由·=·=·知,D为△ABC的内心,所以△ABC为正三角形,易知其边长为2.取AC的中点E,因为M是PC的中点,所以EM=AP=,所以||max=|BE|+=,则||max2=,选B.
12.(2017·郑州质检)在平面直角坐标系中,若定点A(1,2)与动点P(x,y)满足向量在向量上的投影为-,则点P的轨迹方程是( )
A.x-2y+5=0 B.x+2y-5=0
C.x+2y+5=0 D.x-2y-5=0
答案 C
解析 由投影的定义知-==,化简得x+2y+5=0,所以点P的轨迹方程为x+2y+5=0,故选C.
13.(2015·山东,文)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则·=________.
答案
解析 在平面直角坐标系xOy中作出圆x2+y2=1及其切线PA,PB,如图所示.连接OA,OP,由图可得|OA|=|OB|=1,|OP|=2,
||=||=,∠APO=∠BPO=,则,的夹角为,
所以·=||·||·cos=.
14.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若·=1,则AB的长为________.
答案
解析 如图所示,在平行四边形ABCD中,=+,=+=-+.
所以·=(+)·(-+)=-||2+||2+·=-||2+||+1=1,解方程得||=(舍去||=0),所以线段AB的长为.
15.设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若++=0,
则||+||+||=________.
答案 6
解析 设A(x1,y1),B(x2,y2),C(x3,y3),又F(1,0),所以++=(x1+x2+x3-3,y1+y2+y3)=0,得x1+x2+x3=3.又由抛物线定义可得||+||+||=(x1+1)+(x2+1)+(x3+1)=6.
16.如图,AB是半圆O的直径,C,D是的三等分点,M,N是线段AB的三等分点,若OA=6,则·=________.
答案 26
解析 连接OC、OD、MC、ND,则·=(+)·(+)=·+·+·+·=-4+6+6+18=26.
17.(2014·陕西)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上,且=m+n(m,n∈R).
(1)若m=n=,求||;
(2)用x,y表示m-n,并求m-n的最大值.
答案 (1)2 (2)1
解析 (1)∵m=n=,=(1,2),=(2,1),
∴=(1,2)+(2,1)=(2,2).
∴||==2.
(2)∵=m(1,2)+n(2,1)=(m+2n,2m+n),∴
两式相减,得m-n=y-x.令m-n=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.
18.(2017·江西上饶中学调研)已知在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(sinA,sinB),n=(cosB,cosA),m·n=sin2C.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等差数列,且·(-)=18,求c边的长.
答案 (1) (2)6
解析 (1)m·n=sinA·cosB+sinB·cosA=sin(A+B),
对于△ABC,A+B=π-C,0