• 39.50 KB
  • 2021-06-16 发布

高考数学专题复习教案: 坐标系与参数方程

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
坐标系与参数方程 主标题:坐标系与参数方程 副标题:为学生详细的分析坐标系与参数方程的高考考点、命题方向以及规律总结。‎ 关键词:极坐标,参数方程 难度:3‎ 重要程度:5‎ 考点剖析:‎ ‎1.理解坐标系的作用.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.‎ ‎2.会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.‎ ‎3.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.‎ ‎4.了解参数方程,了解参数的意义.‎ ‎5.能选择适当的参数写出直线、圆和椭圆的参数方程.‎ ‎6.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.‎ 命题方向:高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.‎ 规律总结:1.主要题型有极坐标方程、参数方程和普通方程的互化,在极坐标方程或参数方程背景下的直线与圆的相关问题.‎ ‎2.规律方法 方程解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于对方程所表示的曲线的认识,从而达到化陌生为熟悉的 目的,这是化归与转化思想的应用.在涉及圆、椭圆的有关最值问题时,若能将动点的坐标用参数表示出来,借助相应的参数方程,可以有效地简化运算,从而提高解题的速度.‎ ‎3.极坐标方程与普通方程互化核心公式 ,.‎ ‎4.过点A(ρ0,θ0) 倾斜角为α的直线方程为ρ=.特别地,①过点A(a,‎ ‎0),垂直于极轴的直线l的极坐标方程为ρcos θ=a.②平行于极轴且过点A(b,)的直线l的极坐标方程为ρsin θ=b.‎ ‎5.圆心在点A(ρ0,θ0),半径为r的圆的方程为r2=ρ2+ρ-2ρρ0cos(θ-θ0).‎ ‎6.重点掌握直线的参数方程(t为参数),理解参数t的几何意义.‎ 知 识 梳 理 ‎1.直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ),则 ,.‎ ‎2.直线的极坐标方程 若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的方程为ρsin(θ-α)=ρ0sin(θ0-α).‎ 几个特殊位置的直线的极坐标方程 ‎(1)直线过极点:θ=α;‎ ‎(2)直线过点M(a,0)且垂直于极轴:ρcos θ=a;‎ ‎(3)直线过点M(b,)且平行于极轴:ρsin θ=b.‎ ‎3.圆的极坐标方程 若圆心为M(ρ0,θ0),半径为r的圆的方程为 ρ2-2ρ0ρcos(θ-θ0)+ρ-r2=0.‎ 几个特殊位置的圆的极坐标方程 ‎(1)当圆心位于极点,半径为r:ρ=r;‎ ‎(2)当圆心位于M(r,0),半径为r:ρ=2rcos θ;‎ ‎(3)当圆心位于M(r,),半径为r:ρ=2rsin θ.‎ ‎4.直线的参数方程 过定点M(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).‎ ‎5.圆的参数方程 圆心在点M(x0,y0),半径为r的圆的参数方程为(θ为参数,0≤θ≤2π).‎ ‎6.圆锥曲线的参数方程 ‎(1)椭圆+=1的参数方程为(θ为参数).‎ ‎(2)抛物线y2=2px(p>0)的参数方程为(t为参数).‎