- 39.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
坐标系与参数方程
主标题:坐标系与参数方程
副标题:为学生详细的分析坐标系与参数方程的高考考点、命题方向以及规律总结。
关键词:极坐标,参数方程
难度:3
重要程度:5
考点剖析:
1.理解坐标系的作用.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
2.会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.
3.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.
4.了解参数方程,了解参数的意义.
5.能选择适当的参数写出直线、圆和椭圆的参数方程.
6.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.
命题方向:高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.
规律总结:1.主要题型有极坐标方程、参数方程和普通方程的互化,在极坐标方程或参数方程背景下的直线与圆的相关问题.
2.规律方法
方程解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于对方程所表示的曲线的认识,从而达到化陌生为熟悉的
目的,这是化归与转化思想的应用.在涉及圆、椭圆的有关最值问题时,若能将动点的坐标用参数表示出来,借助相应的参数方程,可以有效地简化运算,从而提高解题的速度.
3.极坐标方程与普通方程互化核心公式
,.
4.过点A(ρ0,θ0) 倾斜角为α的直线方程为ρ=.特别地,①过点A(a,
0),垂直于极轴的直线l的极坐标方程为ρcos θ=a.②平行于极轴且过点A(b,)的直线l的极坐标方程为ρsin θ=b.
5.圆心在点A(ρ0,θ0),半径为r的圆的方程为r2=ρ2+ρ-2ρρ0cos(θ-θ0).
6.重点掌握直线的参数方程(t为参数),理解参数t的几何意义.
知 识 梳 理
1.直角坐标与极坐标的互化
把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ),则
,.
2.直线的极坐标方程
若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的方程为ρsin(θ-α)=ρ0sin(θ0-α).
几个特殊位置的直线的极坐标方程
(1)直线过极点:θ=α;
(2)直线过点M(a,0)且垂直于极轴:ρcos θ=a;
(3)直线过点M(b,)且平行于极轴:ρsin θ=b.
3.圆的极坐标方程
若圆心为M(ρ0,θ0),半径为r的圆的方程为
ρ2-2ρ0ρcos(θ-θ0)+ρ-r2=0.
几个特殊位置的圆的极坐标方程
(1)当圆心位于极点,半径为r:ρ=r;
(2)当圆心位于M(r,0),半径为r:ρ=2rcos θ;
(3)当圆心位于M(r,),半径为r:ρ=2rsin θ.
4.直线的参数方程
过定点M(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).
5.圆的参数方程
圆心在点M(x0,y0),半径为r的圆的参数方程为(θ为参数,0≤θ≤2π).
6.圆锥曲线的参数方程
(1)椭圆+=1的参数方程为(θ为参数).
(2)抛物线y2=2px(p>0)的参数方程为(t为参数).
相关文档
- 高考数学专题复习教案: 正弦定理和2021-06-153页
- 高考数学专题复习教案: 函数模型及2021-06-151页
- 高考数学专题复习教案: 函数的奇偶2021-06-152页
- 高考数学专题复习教案: 等差数列及2021-06-152页
- 高考数学专题复习教案: 对数与对数2021-06-153页
- 高考数学专题复习教案: 两条直线的2021-06-152页
- 高考数学专题复习教案: 两条直线的2021-06-151页
- 高考数学专题复习教案: 几何概型备2021-06-153页
- 高考数学专题复习教案:第七章 不 2021-06-1541页
- 高考数学专题复习教案: 集合及其运2021-06-152页