- 301.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 指数函数及其性质(2)
导入新课
思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.
思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明特别是指数函数的单调性,以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质(2).
应用示例
思路1
例1已知指数函数f(x)=ax(a>0且a≠1)的图象过点(3,π),求f(0),f(1),f(-3)的值.
活动:学生审题,把握题意,教师适时提问,点拨,求值的关键是确定a,一般用待定系数法,构建一个方程来处理,函数图象过已知点,说明点在图象上,意味着已知点的坐标满足曲线的方程,转化为将已知点的坐标代入指数函数f(x)=ax(a>0且a≠1)求a的值,进而求出f(0),f(1),f(-3)的值,请学生上黑板板书,及时评价.
解:因为图象过点(3,π),
所以f(3)=a3=π,即a=π,f(x)=(π)x.
再把0,1,3分别代入,得
f(0)=π0=1,
f(1)=π1=π,
f(-3)=π-1=.
点评:根据待定系数的多少来确定构建方程的个数是解题的关键,这是方程思想的运用.
例2用函数单调性的定义证明指数函数的单调性.
活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.
证法一:设x1,x2∈R,且x1<x2,则
y2-y1=ax2-ax1=ax1(ax2-x1-1).
因为a>1,x2-x1>0,所以ax2-x1>1,即ax2-x1-1>0.
又因为ax1>0,
所以y2-y1>0,
即y11,y10且y≠1}.
(2)由5x-1≥0得x≥,所以所求函数定义域为{x|x≥}.由≥0得y≥1,
所以函数值域为{y|y≥1}.
(3)所求函数定义域为R,由2x>0可得2x+1>1.
所以函数值域为{y|y>1}.
(4)由已知得:函数的定义域是R,且(2x+1)y=2x-2,即(y-1)2x=-y-2.
因为y≠1,所以2x=.又x∈R,所以2x>0,>0.解之,得-20,所以值域为(0,1)∪(1,+∞).
例2
(1)求函数y=()的单调区间,并证明.
(2)设a是实数,f(x)=a(x∈R),试证明对于任意a,f(x)为增函数.
活动:(1)这个函数的单调区间由两个函数决定,指数函数y=()x与y=x2-2x的复合函数,(2)函数单调性的定义证明函数的单调性,要按规定的格式书写.
解法一:设x10.
当x1,x2∈(-∞,1]时,x1+x2-2<0,这时(x2-x1)(x2+x1-2)<0,
即>1,所以y2>y1,函数单调递增;
当x1,x2∈[1,+∞)时,x1+x2-2>0,这时(x2-x1)(x2+x1-2)>0,
即<1,所以y2u2,又因为y=()u是减函数,
所以y10得2x1+1>0,2x2+1>0,
所以f(x1)-f(x2)<0,即f(x1)0;④<.
当f(x)=10x时,上述结论中正确的是.
分析:因为f(x)=10x,且x1≠x2,所以f(x1+x2)===f(x1)·f(x2),所以①正确;
因为f(x1·x2)=≠=f(x1)+f(x2),②不正确;
因为f(x)=10x是增函数,所以f(x1)-f(x2)与x1-x2同号,所以>0,所以③正确.
因为函数f(x)=10x图象如图2-1-2-9所示是上凹下凸的,可解得④正确.
图2-1-2-9
答案:①③④
另解:④
∵10x1>0,10x2>0,x1≠x2,∴>∴>,
即>∴>.
拓展提升
在同一坐标系中作出下列函数的图象,讨论它们之间的联系.
(1)①y=3x,②y=3x+1,③y=3x-1;
(2)①y=()x,②y=()x-1,③y=()x+1.
活动:学生动手画函数图象,教师点拨,学生没有思路教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.
答案:如图2-1-2-10及图2-1-2-11.
图2-1-2-10图2-1-2-11
观察图2-1-2-10可以看出,y=3x,y=3x+1,y=3x-1的图象间有如下关系:
y=3x+1的图象由y=3x的图象左移1个单位得到;
y=3x-1的图象由y=3x的图象右移1个单位得到;
y=3x-1的图象由y=3x+1的图象向右移动2个单位得到.
观察图2-1-2-11可以看出,y=()x,y=()x-1,y=()x+1的图象间有如下关系:
y=()x+1的图象由y=()x的图象左移1个单位得到;
y=()x-1的图象由y=()x的图象右移1个单位得到;
y=()x-1的图象由y=()x+1的图象向右移动2个单位得到.
你能推广到一般的情形吗?同学们留作思考.
课堂小结
思考
我们本堂课主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.
活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.
本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.
作业
课本P59习题2.1 B组 1、3、4.
设计感想
本堂课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0
相关文档
- 高中数学必修1教案:第四章(第31课时)2021-06-165页
- 高中数学必修1教案:第1章集合与逻辑2021-06-167页
- 指数函数及其性质2021-06-169页
- 高中数学必修1教案:第四章(第2课时)角2021-06-166页
- 高中数学必修1教案:第三章(第2课时)数2021-06-166页
- 高中数学必修1教案第一章 1_3_2奇2021-06-1610页
- 高中数学必修1教案:第二章(第18课时)2021-06-167页
- 高中数学必修1教案:第一章(第7课时)2021-06-165页
- 高中数学必修1教案:第九章直线平面2021-06-166页
- 高中数学必修1教案1_2_2-1函数的几2021-06-165页