- 2.10 MB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题15 三角函数与解三角形综合
【2020年】
1.(2020·新课标Ⅱ)中,sin2A-sin2B-sin2C=sinBsinC.
(1)求A;
(2)若BC=3,求周长的最大值.
【答案】(1);(2).
【解析】
(1)由正弦定理可得:,
,
,.
(2)由余弦定理得:,
即.
(当且仅当时取等号),
,
解得:(当且仅当时取等号),
周长,周长的最大值为.
【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.
2.(2020·北京卷)在中,,再从条件①、条件②这两个条件中选择一个作为己知,求:
(Ⅰ)a的值:
(Ⅱ)和的面积.
26
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
【答案】选择条件①(Ⅰ)8(Ⅱ), ;
选择条件②(Ⅰ)6(Ⅱ), .
【解析】选择条件①(Ⅰ)
(Ⅱ)
由正弦定理得:
选择条件②(Ⅰ)
由正弦定理得:
(Ⅱ)
【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.
26
3.(2020·山东卷)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.
问题:是否存在,它的内角的对边分别为,且,,________?
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】详见解析
【解析】解法一:
由可得:,
不妨设,
则:,即.
选择条件①的解析:
据此可得:,,此时.
选择条件②的解析:
据此可得:,
则:,此时:,则:.
选择条件③的解析:
可得,,
与条件矛盾,则问题中的三角形不存在.
解法二:∵,
∴,
,
26
∴,∴,∴,∴,
若选①,,∵,∴,∴c=1;
若选②,,则,;
若选③,与条件矛盾.
【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.
4.(2020·天津卷)在中,角所对的边分别为.已知.
(Ⅰ)求角的大小;
(Ⅱ)求的值;
(Ⅲ)求的值.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】
(Ⅰ)在中,由及余弦定理得
,
又因为,所以;
(Ⅱ)在中,由,及正弦定理,可得;
(Ⅲ)由知角为锐角,由,可得,
26
进而,
所以.
【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.
5.(2020·浙江卷)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.
(I)求角B;
(II)求cosA+cosB+cosC的取值范围.
【答案】(I);(II)
【解析】
(I)由结合正弦定理可得:
△ABC为锐角三角形,故.
(II)结合(1)的结论有:
.
由可得:,,
则,.
26
即的取值范围是.
【2019年】
1.【2019年高考全国Ⅰ卷】的内角A,B,C的对边分别为a,b,c,设.
(1)求A;
(2)若,求sinC.
【答案】(1);(2).
【解析】(1)由已知得,故由正弦定理得.
由余弦定理得.
因为,所以.
(2)由(1)知,由题设及正弦定理得,
即,可得.
由于,所以,故
.
2.【2019年高考全国Ⅲ卷】△ABC的内角A,B,C的对边分别为a,b,c,已知.
(1)求B;
(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.
26
【答案】(1)B=60°;(2).
【解析】(1)由题设及正弦定理得.
因为sinA0,所以.
由,可得,故.
因为,故,因此B=60°.
(2)由题设及(1)知△ABC的面积.
由正弦定理得.
由于△ABC为锐角三角形,故0°90°时,在中,.
由上可知,d≥15.
再讨论点Q的位置.
由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,.此时,线段QA上所有点到点O的距离均不小于圆O的半径.
综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+.
因此,d最小时,P,Q两点间的距离为17+(百米).
解法二:
(1)如图,过O作OH⊥l,垂足为H.
以O为坐标原点,直线OH为y轴,建立平面直角坐标系.
因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.
因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.
从而A(4,3),B(−4,−3),直线AB的斜率为.
因为PB⊥AB,所以直线PB的斜率为,
直线PB的方程为.
26
所以P(−13,9),.
因此道路PB的长为15(百米).
(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.
②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),
所以线段AD:.
在线段AD上取点M(3,),因为,
所以线段AD上存在点到点O的距离小于圆O的半径.
因此Q选在D处也不满足规划要求.
综上,P和Q均不能选在D处.
(3)先讨论点P的位置.
当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;
当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.
设为l上一点,且,由(1)知,B=15,此时(−13,9);
当∠OBP>90°时,在中,.
由上可知,d≥15.
再讨论点Q的位置.
由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由,得a=,所以Q(,9),此时,线段QA上所有点到点O的距离均不小于圆O的半径.
综上,当P(−13,9),Q(,9)时,d最小,此时P,Q两点间的距离
.
因此,d最小时,P,Q两点间的距离为(百米).
7.【2019年高考浙江卷】设函数.
(1)已知函数是偶函数,求的值;
26
(2)求函数的值域.
【答案】(1)或;(2).
【解析】(1)因为是偶函数,所以,对任意实数x都有,
即,
故,
所以.
又,因此或.
(2)
.
因此,函数的值域是.
【2018年】
1. (2018年浙江卷)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.
【答案】(Ⅰ) , (Ⅱ) 或
【解析】(Ⅰ)由角的终边过点得,
所以.
26
(Ⅱ)由角的终边过点得,
由得.
由得,
所以或.
2. (2018年天津卷)在中,内角A,B,C所对的边分别为a,b,c.已知.
(I)求角B的大小;
(II)设a=2,c=3,求b和的值.
【答案】(Ⅰ);(Ⅱ),.
【解析】(Ⅰ)在△ABC中,由正弦定理,可得,
又由,得,
即,可得.
又因为,可得B=.
(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,
有,故b=.
由,可得.因为a0).
则a=ksin A,b=ksin B,c=ksin C.
代入+=中,有
+=,变形可得
sin Asin B=sin Acos B+cos Asin B=sin(A+B).
在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)=sin C,
所以sin Asin B=sin C.
(Ⅱ)由已知,b2+c2–a2=bc,根据余弦定理,有
cos A==.
所以sin A==.
由(Ⅰ),sin Asin B=sin Acos B+cos Asin B,
所以sin B=cos B+sin B,
故tan B==4.
26
相关文档
- 2021届高考数学一轮复习第三章三角2021-06-1641页
- 浙江专用2021届高考数学一轮复习第2021-06-1617页
- 【数学】2019届理科一轮复习北师大2021-06-167页
- 【数学】2020届一轮复习北师大版三2021-06-1612页
- 2021届高考数学一轮复习第三章三角2021-06-1642页
- 2020届二轮复习“平面向量、三角函2021-06-166页
- 2021届高考数学一轮复习第三章三角2021-06-1641页
- 浙江专用2021届高考数学一轮复习第2021-06-1624页
- 【数学】2019届一轮复习人教A版三2021-06-1611页
- 【数学】2020届一轮复习北师大版三2021-06-165页