• 231.00 KB
  • 2021-06-16 发布

人教a版数学【选修1-1】作业:2-2-1双曲线及其标准方程(含答案)

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
§2.2 双曲线 2.2.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标 准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题. 1.双曲线的有关概念 (1)双曲线的定义 平面内与两个定点 F1,F2 的距离的差的绝对值等于常数(小于________)的点的轨迹叫做 双曲线. 平面内与两个定点 F1,F2 的距离的差的绝对值等于|F1F2|时的点的轨迹为 __________________________________________. 平面内与两个定点 F1,F2 的距离的差的绝对值大于|F1F2|时的点的轨迹__________. (2)双曲线的焦点和焦距 双曲线定义中的两个定点 F1 、F2 叫做________________,两焦点间的距离叫做 ________________. 2.双曲线的标准方程 (1)焦点在 x 轴上的双曲线的标准方程是________________,焦点 F1__________, F2__________. (2)焦点在 y 轴上的双曲线的标准方程是________________________,焦点 F1________, F2__________. (3)双曲线中 a、b、c 的关系是____________. 一、选择题 1.已知平面上定点 F1、F2 及动点 M,命题甲:||MF1|-|MF2||=2a(a 为常数),命题乙: M 点轨迹是以 F1、F2 为焦点的双曲线,则甲是乙的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.若 ax2+by2=b(ab<0),则这个曲线是( ) A.双曲线,焦点在 x 轴上 B.双曲线,焦点在 y 轴上 C.椭圆,焦点在 x 轴上 D.椭圆,焦点在 y 轴上 3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A.x2-y2 3 =1 B.x2 3 -y2=1 C.y2-x2 3 =1 D.x2 2 -y2 2 =1 4.双曲线x2 m - y2 3+m =1 的一个焦点为(2,0),则 m 的值为( ) A.1 2 B.1 或 3 C.1+ 2 2 D. 2-1 2 5.一动圆与两圆:x2+y2=1 和 x2+y2-8x+12=0 都外切,则动圆圆心的轨迹为( ) A.抛物线 B.圆 C.双曲线的一支 D.椭圆 6.已知双曲线中心在坐标原点且一个焦点为 F1(- 5,0),点 P 位于该双曲线上,线 段 PF1 的中点坐标为(0,2),则该双曲线的方程是( ) A.x2 4 -y2=1 B.x2-y2 4 =1 C.x2 2 -y2 3 =1 D.x2 3 -y2 2 =1 题号 1 2 3 4 5 6 答案 二、填空题 7.设 F1、F2 是双曲线 x2 4 -y2=1 的两个焦点,点 P 在双曲线上,且PF1 → ·PF2 → =0,则 |PF1|·|PF2|=______. 8.已知方程 x2 1+k - y2 1-k =1 表示双曲线,则 k 的取值范围是________. 9.F1、F2 是双曲线x2 9 -y2 16 =1 的两个焦点,P 在双曲线上且满足|PF1|·|PF2|=32,则∠ F1PF2=______. 三、解答题 10.设双曲线与椭圆x2 27 +y2 36 =1 有相同的焦点,且与椭圆相交,一个交点 A 的纵坐标为 4,求此双曲线的标准方程. 11.在△ABC 中,B(4,0)、C(-4,0),动点 A 满足 sin B-sin C=1 2sin A,求动点 A 的轨 迹方程. 能力提升 12.若点 O 和点 F(-2,0)分别为双曲线x2 a2 -y2=1(a>0)的中心和左焦点,点 P 为双曲线 右支上的任意一点,则OP→ ·FP→的取值范围为( ) A.[3-2 3,+∞) B.[3+2 3,+∞) C.[-7 4 ,+∞) D.[7 4 ,+∞) 13.已知双曲线的一个焦点为 F( 7,0),直线 y=x-1 与其相交于 M,N 两点,MN 中 点的横坐标为-2 3 ,求双曲线的标准方程. 1.双曲线的标准方程可以通过待定系数法求得. 2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义 相结合. 3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公 式等解决. §2.2 双曲线 2.2.1 双曲线及其标准方程 答案 知识梳理 1.(1)|F1F2| 以 F1,F2 为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距 2.(1)x2 a2 -y2 b2 =1(a>0,b>0) (-c,0) (c,0) (2)y2 a2 -x2 b2 =1(a>0,b>0) (0,-c) (0,c) (3)c2=a2+b2 作业设计 1.B [根据双曲线的定义,乙⇒甲,但甲  乙, 只有当 2a<|F1F2|且 a≠0 时,其轨迹才是双曲线.] 2.B [原方程可化为x2 b a +y2=1,因为 ab<0,所以b a<0,所以曲线是焦点在 y 轴上的双 曲线,故选 B.] 3.A [∵双曲线的焦点在 x 轴上, ∴设双曲线方程为x2 a2 -y2 b2 =1 (a>0,b>0). 由题知 c=2,∴a2+b2=4. ① 又点(2,3)在双曲线上,∴22 a2 -32 b2 =1. ② 由①②解得 a2=1,b2=3, ∴所求双曲线的标准方程为 x2-y2 3 =1.] 4.A [∵双曲线的焦点为(2,0),在 x 轴上且 c=2, ∴m+3+m=c2=4.∴m=1 2.] 5.C [由题意两定圆的圆心坐标为 O1(0,0),O2(4,0),设动圆圆心为 O,动圆半径为 r, 则|OO1|=r+1,|OO2|=r+2,∴|OO2|-|OO1|=1<|O1O2|=4,故动圆圆心的轨迹为双 曲线的一支.] 6.B [设双曲线方程为x2 a2 -y2 b2 =1,因为 c= 5,c2=a2+b2,所以 b2=5-a2,所以 x2 a2 - y2 5-a2 =1.由于线段 PF1 的中点坐标为(0,2),则 P 点的坐标为( 5,4).代入双曲线 方程得 5 a2 - 16 5-a2 =1,解得 a2=1 或 a2=25(舍去),所以双曲线方程为 x2-y2 4 =1.故选 B.] 7.2 解析 ∵||PF1|-|PF2||=4, 又 PF1⊥PF2,|F1F2|=2 5, ∴|PF1|2+|PF2|2=20,∴(|PF1|-|PF2|)2 =20-2|PF1||PF2|=16,∴|PF1|·|PF2|=2. 8.-10.所以(k+1)(k-1)<0. 所以-10,b>0),由题意知 c2=36-27 =9,c=3. 又点 A 的纵坐标为 4,则横坐标为± 15,于是有 42 a2 -± 152 b2 =1, a2+b2=9, 解得 a2=4, b2=5. 所以双曲线的标准方程为y2 4 -x2 5 =1. 方法二 将点 A 的纵坐标代入椭圆方程得 A(± 15,4), 又两焦点分别为 F1(0,3),F2(0,-3). 所以 2a=| ± 15-02+4+32- ± 15-02+4-32|=4, 即 a=2,b2=c2-a2=9-4=5, 所以双曲线的标准方程为y2 4 -x2 5 =1. 11.解 设 A 点的坐标为(x,y),在△ABC 中,由正弦定理,得 a sin A = b sin B = c sin C =2R, 代入 sin B-sin C=1 2sin A, 得|AC| 2R -|AB| 2R =1 2·|BC| 2R ,又|BC|=8, 所以|AC|-|AB|=4. 因此 A 点的轨迹是以 B、C 为焦点的双曲线的右支(除去右顶点)且 2a=4,2c=8,所以 a=2,c=4,b2=12. 所以 A 点的轨迹方程为x2 4 -y2 12 =1 (x>2). 12.B [由 c=2 得 a2+1=4, ∴a2=3, ∴双曲线方程为x2 3 -y2=1. 设 P(x,y)(x≥ 3), ∴ OP→ ·FP→=(x,y)·(x+2,y)=x2+2x+y2 =x2+2x+x2 3 -1 =4 3x2+2x-1(x≥ 3). 令 g(x)=4 3x2+2x-1(x≥ 3),则 g(x)在[ 3,+∞)上单调递增.g(x)min=g( 3)=3+2 3. OP→ ·FP→的取值范围为[3+2 3,+∞).] 13.解 设双曲线的标准方程为x2 a2 -y2 b2 =1, 且 c= 7,则 a2+b2=7.① 由 MN 中点的横坐标为-2 3 知, 中点坐标为 -2 3 ,-5 3 . 设 M(x1,y1),N(x2,y2), 则由 x21 a2 -y21 b2 =1, x22 a2 -y22 b2 =1, 得 b2(x1+x2)(x1-x2)-a2(y1+y2)(y1-y2)=0. ∵ x1+x2=-4 3 y1+y2=-10 3 ,且y1-y2 x1-x2 =1, ∴2b2=5a2.② 由①,②求得 a2=2,b2=5. ∴所求双曲线的标准方程为x2 2 -y2 5 =1.