- 223.00 KB
- 2021-06-17 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§1.3.1函数的单调性与最大(小)值
第二课时函数的最大(小)值
【教学目标】
(1)理解函数的最大(小)值及其几何意义;
(2)学会运用函数图象理解和研究函数的性质;
【教学重点难点】
重点:函数的最大(小)值及其几何意义.
难点:利用函数的单调性求函数的最大(小)值.
【教学过程】
一、引入课题
画出下列函数的图象,并根据图象解答下列问题:
说出y=f(x)的单调区间,以及在各单调区间上的单调性;
指出图象的最高点或最低点,并说明它能体现函数的什么特征?
(1) (2)
(3) (4)
二、新课教学
(一)函数最大(小)值定义
1.最大值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最大值(Maximum Value).
思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动)
注意:
函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M;
函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).
2.利用函数单调性的判断函数的最大(小)值的方法
利用二次函数的性质(配方法)求函数的最大(小)值
利用图象求函数的最大(小)值
利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
(二)典型例题
例1.(教材P36例3)利用二次函数的性质确定函数的最大(小)值.
解:(略)
点评:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.
变式训练1:设a,b∈R,且a>0,函数f(x)=x2+ax+2b,g(x)=ax+b, 在[-1,1]上g(x)的最大值为2,则f(2)等于( ).
A.4 B.8 C.10 D.16
例2.
旅 馆 定 价
一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:
房价(元)
住房率(%)
160
55
140
65
120
75
100
85
欲使每天的的营业额最高,应如何定价?
解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.
设为旅馆一天的客房总收入,为与房价160相比降低的房价,因此当房价为元时,住房率为,于是得
=150··.
由于≤1,可知0≤≤90.
因此问题转化为:当0≤≤90时,求的最大值的问题.
将的两边同除以一个常数0.75,得1=-2+50+17600.
由于二次函数1在=25时取得最大值,可知也在=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).
所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)
点评:结合二次函数性质及函数单调性的定义解决问题
变式训练2. 函数f(x)= x2+2(a-1)x+2在区间(-∞,4)上递减,则a的取值范围是( )
A. B. C. (-∞,5) D.
四、小结
函数的单调性一般是
先根据图象判断,再利用定义证明.求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:
取 值 → 作 差 → 变 形 → 定 号 → 下结论
【板书设计】
一、 函数最值
二、 典型例题
例1: 例2:
小结:
【作业布置】完成本节课学案预习下一节。
§1.3.1函数的单调性与最大(小)值(2)
课前预习学案
一、预习目标:
认知函数最值的定义及其几何意义
二、预习内容:
1. 画出下列函数的图象,并根据图象解答下列问题:
说出y=f(x)的单调区间,以及在各单调区间上的单调性;
指出图象的最高点或最低点,并说明它能体现函数的什么特征?
(1) (2)
(3) (4)
2. 一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最 值.
3.试给出最小值的定义.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
(1)理解函数的最大(小)值及其几何意义;
(2)学会运用函数图象理解和研究函数的性质;
学习重点:函数的最大(小)值及其几何意义.
学习难点:利用函数的单调性求函数的最大(小)值.
二、学习过程
例1.(教材P36例3)利用二次函数的性质确定函数的最大(小)值.
解:
变式训练1:设a,b∈R,且a>0,函数f(x)=x2+ax+2b,g(x)=ax+b, 在[-1,1]上g(x)的最大值为2,则f(2)等于( ).
A.4 B.8 C.10 D.16
例2.
旅 馆 定 价
一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:
房价(元)
住房率(%)
160
55
140
65
120
75
100
85
欲使每天的的营业额最高,应如何定价?
解:
变式训练2. 函数f(x)= x2+2(a-1)x+2在区间(-∞,4)上递减,则a的取值范围是( )
A. B. C. (-∞,5) D.
三、当堂检测
1.设偶函数的定义域为,当时,是增函数,则 ,的大小关系是 ( )
A B
C D
2.已知偶函数在区间单调递增,则满足<的x 取值范围是
A.(,) B.(,) C.(,) D.
3.若偶函数在上是增函数,则下列关系式中成立的是 ( )
A. B.
C. D.
4.已知偶函数在区间单调增加,则满足<的x 取值范围是( )
A.(,) B.[,) C.(,) D.[,)
课后练习与提高
1已知函数f(x)=ax2+2ax+4(0f(x2) D.f(x1)与f(x2)的大小不能确定
2已知函数为R上的减函数,则满足的实数的取值范围是( )
A. B. C. D.
3.对、,记=,则函数f(x)=min{|x+1|,|x-1|}(xR)的单调增区间为
A. B. C. 和 D. 和
4.若函数内为增函数,则实数a的取值范围( )
A. B. C. D.
5.(04上海)若函数f(x)=a|x-b|+2在 上为增函数,则实数a,b的取值范围是____________
6设f(x),g(x)都是单调函数,有如下四个命题:
(1)若f(x)单调递增, g(x)单调递增,则f(x)-g(x)单调递增
(2) 若f(x)单调递增, g(x)单调递减,则f(x)-g(x)单调递增
(3)若f(x)单调递减, g(x)单调递增,则f(x)-g(x)单调递减
(4) 若f(x)单调递减, g(x)单调递减,则f(x)-g(x)单调递减
其中,正确命题的序号为_______________
7、求函数在[2,5]上的最大值和最小值
参考答案
例1略 变式训练1 B
当堂检测
1.A 2.A 3.D 4.A
课后练习与提高
1. A 2. C 3. D 4. A 5. a>0 b<0 6. (3)(2)
7. 解析:,可证f(x)在[2,5]上是减函数,
故 当x=2时,f(x)最大值为2
当x=5时,f(x)最小值为
相关文档
- 高中数学必修1教案:第四章(第34课时)2021-06-177页
- 高中数学必修1教案:第四章(第16课时)2021-06-176页
- 2021版高考文科数学(北师大版)一轮复2021-06-1739页
- 2021版高考数学一轮复习第二章函数2021-06-1722页
- 2018届二轮复习(文) 导数与函数的单2021-06-1716页
- 高中数学选修2-2教学课件4_3_1《函2021-06-1733页
- 2016届高考数学(理)5年高考真题备考2021-06-173页
- 2019高三数学文北师大版一轮课时分2021-06-177页
- 高中数学必修1教案:第九章直线平面2021-06-166页
- 高中数学必修1教案1_2_2-2分段函数2021-06-167页