- 86.70 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
A组 专项基础训练
(时间:50分钟)
1.已知x+y=1,求2x2+3y2的最小值.
【解析】 由柯西不等式(2x2+3y2)·≥=(x+y)2=1,
∴2x2+3y2≥,当且仅当2x=3y,即x=,y=时,等号成立.所以2x2+3y2的最小值为.
2.(2017·吉林实验中学模拟)设函数f(x)=|x-a|.
(1)当a=2时,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集为[0,2],+=a(m>0,n>0),求证:m+2n≥4.
【解析】 (1)当a=2时,不等式为|x-2|+|x-1|≥4,
①当x≥2时,不等式可化为x-2+x-1≥4,解得x≥;
②当<x<时,不等式可化为2-x+x-1≥4,不等式的解集为∅;
③当x≤时,不等式可化为2-x+1-x≥4,解得x≤-.
综上可得,不等式的解集为∪.
(2)证明 ∵f(x)≤1,即|x-a|≤1,
解得a-1≤x≤a+1,而f(x)≤1的解集是[0,2],
∴解得a=1,
所以+=1(m>0,n>0),
所以m+2n=(m+2n)
=2++≥2+2 =4,
当且仅当m=2,n=1时取等号.
3.(2017·徐州模拟)设a、b、c是正实数,且a+b+c=9,求++的最小值.
【解析】 ∵(a+b+c)
=[()2+()2+()2]·
≥=18.
∴++≥2.∴++的最小值为2.
4.设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=,求x+y+z.
【解析】 由柯西不等式可得(x2+y2+z2)(12+22+32)≥(x+2y+3z)2,即(x+2y+3z)2≤14,因此x+2y+3z≤.因为x+2y+3z=,所以x==,解得x=,y=,z=,于是x+y+z=.
5.(2017·南京、盐城联考)已知△ABC的三边长分别为a,b,c.求证:++≥a+b+c.
【证明】 因为[(b+c-a)+(c+a-b)+(a+b-c)]≥(a+b+c)2,
又a+b+c>0,
所以++≥a+b+c(当且仅当==时取等号).
6.(2017·苏州模拟)已知a,b,c∈R,且2a+2b+c=8,求(a-1)2+(b+2)2+(c-3)2的最小值.
【解析】 由柯西不等式得
(4+4+1)×[(a-1)2+(b+2)2+(c-3)2]≥[2(a-1)+2(b+2)+c-3]2,
∴9[(a-1)2+(b+2)2+(c-3)2]≥(2a+2b+c-1)2.
∵2a+2b+c=8,
∴(a-1)2+(b+2)2+(c-3)2≥,
当且仅当==c-3时等号成立,
∴(a-1)2+(b+2)2+(c-3)2的最小值是.
B组 专项能力提升
(时间:40分钟)
7.(2016·课标全国Ⅱ)已知函数f(x)=+,M为不等式f(x)<2的解集.
(1)求M;
(2)证明:当a,b∈M时,|a+b|<|1+ab|.
【解析】 (1)f(x)=
当x≤-时,由f(x)<2,得-2x<2,解得x>-1,
即-1<x≤-;
当-<x<时,f(x)=1<2,即-<x<;
当x≥时,由f(x)<2,得2x<2,解得x<1,
即≤x<1.
所以f(x)<2的解集M={x|-1<x<1}.
(2)证明 由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.
因此|a+b|<|1+ab|.
8.(2017·黑龙江哈尔滨三中第二次检测)已知a,b,c为正实数,且a+b+c=2.
(1)求证:ab+bc+ac≤;
(2)若a,b,c都小于1,求a2+b2+c2的取值范围.
【解析】 (1)证明 ∵a+b+c=2,∴a2+b2+c2+2ab+2bc+2ca=4,∴2a2+2b2+2c2+4ab+4bc+4ca=8,
∴8=2a2+2b2+2c2+4ab+4bc+4ca≥6ab+6bc+6ac,当且仅当a=b=c时取等号,∴ab+bc+ac≤.
(2)∵a2+b2+c2+2ab+2bc+2ca=4,
∴4≤a2+b2+c2+a2+b2+b2+c2+a2+c2=3(a2+b2+c2),当且仅当a=b=c时取等号,∴a2+b2+c2≥.
∵0<a<1,∴a>a2.同理b>b2,c>c2.
∴a2+b2+c2<a+b+c=2,∴≤a2+b2+c2<2,
∴a2+b2+c2的取值范围为.
9.(2017·锦州一模)(1)关于x的不等式|x-3|+|x-4|<a的解集不是空集,求a的取值范围;
(2)设x,y,z∈R,且++=1,求x+y+z的取值范围.
【解析】 (1)∵|x-3|+|x-4|≥|(x-3)-(x-4)|=1,
且|x-3|+|x-4|<a的解集不是空集,
∴a>1,即a的取值范围是(1,+∞).
(2)由柯西不等式,得
[42+()2+22]·
≥
=(x+y+z)2,
即25×1≥(x+y+z)2.
∴5≥|x+y+z|,∴-5≤x+y+z≤5.
∴x+y+z的取值范围是[-5,5].
10.(2017·南京模拟)已知a,b∈(0,+∞),a+b=1,x1,x2∈(0,+∞).
(1)求++的最小值;
(2)求证:(ax1+bx2)(ax2+bx1)≥x1x2.
【解析】 (1)因为a,b∈(0,+∞),a+b=1,x1,x2∈(0,+∞),
所以++≥3·
=3·≥3·=3×=6,
当且仅当==且a=b,即a=b=且x1=x2=1时,++有最小值6.
方法二 因为a,b∈(0,+∞),a+b=1,x1,x2∈(0,+∞),
所以(ax1+bx2)(ax2+bx1)
=a2x1x2+abx+abx+b2x1x2
=x1x2(a2+b2)+ab(x+x)
≥x1x2(a2+b2)+ab(2x1x2)
=x1x2(a2+b2+2ab)
=x1x2(a+b)2
=x1x2,
当且仅当x1=x2时,取得等号.
所以(ax1+bx2)(ax2+bx1)≥x1x2.
相关文档
- 2019年高考数学练习题汇总2019届高2021-06-2415页
- 2019年高考数学练习题汇总2019届高2021-06-2416页
- 2019年高考数学练习题汇总小题提速2021-06-246页
- 2019年高考数学练习题汇总压轴小题2021-06-248页
- 2019年高考数学练习题汇总高考解答2021-06-245页
- 2019年高考数学练习题汇总高考解答2021-06-244页
- 2019年高考数学练习题汇总解答题满2021-06-246页
- 2019年高考数学练习题汇总解答题滚2021-06-245页
- 2019年高考数学练习题汇总小题提速2021-06-247页
- 2019年高考数学练习题汇总高考填空2021-06-245页