- 159.50 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
[基础题组练]
1.若tan(α+80°)=4sin 420°,则tan(α+20°)的值为( )
A.- B.
C. D.
解析:选D.由tan(α+80°)=4sin 420°=4sin 60°=2,得tan(α+20°)=tan[(α+80°)-60°]===.故选D.
2.(2020·河南天一大联考阶段性测试(五))已知sin=,则sin 4x的值为( )
A. B.±
C. D.±
解析:选A.因为sin=(cos 2x-sin 2x)=,
所以sin 2x-cos 2x=-,
所以(sin 2x-cos 2x)2=1-2sin 2xcos 2x=1-sin 4x=,所以sin 4x=,故选A.
3.(2020·江西九江二模)若sin=2cos αsin ,则=( )
A. B.
C.2 D.4
解析:选B.因为sin=2cos αsin ,
所以sin αcos -cos αsin =2cos αsin ,
所以sin αcos =3cos αsin .
所以tan α=3 tan ,
所以=
====.
故选B.
4.(2020·福建龙岩教学质量检查)若α∈,且3sin α+2cos α=2,则tan 等于( )
A. B.
C. D.
解析:选D.3sin α+2cos α
=
==2,
所以3tan +1-tan2=tan2+1,解得tan=0或,又α∈(0,π),所以tan ≠0,所以tan =,故选D.
5.(2020·湖北八校联考)已知3π≤θ≤4π,且 +=,则θ=( )
A.或 B.或
C.或 D.或
解析:选D.因为3π≤θ≤4π,所以≤≤2π,所以cos ≥0,sin ≤0,则 +=+=cos -sin =cos=,所以cos=,
所以+=+2kπ或+=-+2kπ,k∈Z,即θ=-+4kπ或θ=-+4kπ,k∈Z.因为3π≤θ≤4π,所以θ=或,故选D.
6.的值为________.
解析:原式===.
答案:
7.(2020·平顶山模拟)已知sin α=-,若=2,则tan(α+β)=________.
解析:因为sin α=-,α∈,所以cos α=.由=2,得sin(α+β)=2cos[(α+β)-α],即cos(α+β)=sin(α+β),所以tan(α+β)=.
答案:
8.设α是第四象限角,若=,则tan 2α=________.
解析:==
=cos 2α+2cos2α=4cos2α-1=,解得cos2α=.
因为α是第四象限角,所以cos α=,sin α=-,
所以sin 2α=2sin αcos α=-,cos 2α=2cos2α-1=,
所以tan 2α=-.
答案:-
9.已知tan α=-,cos β=,α∈,β∈,求tan(α+β)的值,并求出α+β的值.
解:由cos β=,β∈,
得sin β=,tan β=2.
所以tan(α+β)=
==1.
因为α∈,β∈,
所以<α+β<,
所以α+β=.
10.已知函数f(x)=4tan x·sin·cos-.
(1)求f(x)的定义域与最小正周期;
(2)讨论f(x)在区间上的单调性.
解:(1)f(x)的定义域为.
f(x)=4tan xcos xcos-
=4sin xcos-
=4sin x-
=2sin xcos x+2sin2x-
=sin 2x+(1-cos 2x)-
=sin 2x-cos 2x=2sin.
所以f(x)的最小正周期T==π.
(2)因为x∈,
所以2x-∈,
由y=sin x的图象可知,当2x-∈,
即x∈时,f(x)递减;当2x-∈,即x∈时,f(x)递增.
所以当x∈时,f(x)在区间上递增,在区间上递减.
[综合题组练]
1.设α∈,β∈,且tan α=,则下列结论中正确的是( )
A.α-β= B.α+β=
C.2α-β= D.2α+β=
解析:选A.tan α=====tan.因为α∈,β+∈,所以α=β+,即α-β=.
2.若sin 2α=,sin(β-α)=,且α∈,β∈,则α+β的值是( )
A. B.
C.或 D.或
解析:选A.因为α∈,β∈,
所以2α∈.
又0
相关文档
- 2021届浙江新高考数学一轮复习高效2021-06-247页
- 2021届浙江新高考数学一轮复习高效2021-06-247页
- 2021届北师大版高考理科数一轮复习2021-06-249页
- 2021届浙江新高考数学一轮复习高效2021-06-245页
- 2021届北师大版高考理科数一轮复习2021-06-247页
- 2021届北师大版高考理科数一轮复习2021-06-248页
- 2021届浙江新高考数学一轮复习高效2021-06-247页
- 2021届北师大版高考理科数一轮复习2021-06-245页
- 2021届北师大版高考理科数一轮复习2021-06-247页
- 2021届北师大版高考理科数一轮复习2021-06-247页