- 105.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
必修一 2.1.2 指数函数及其性质(一)
一、选择题
1、函数f(x)=(a2-3a+3)ax是指数函数,则有( )
A.a=1或a=2 B.a=1
C.a=2 D.a>0且a≠1
2、下列以x为自变量的函数中,是指数函数的是( )
A.y=(-4)x B.y=πx
C.y=-4x D.y=ax+2(a>0且a≠1)
3、定义运算a⊕b=,则函数f(x)=1⊕2x的图象是( )
4、函数y=()x-2的图象必过( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
5、下图是指数函数①y=ax;②y=bx;③y=cx;④y=dx的图象,则a、b、c、d与1的大小关系是( )
A.a1)的图象是( )
二、填空题
8、函数y=8-23-x(x≥0)的值域是________.
9、若函数y=ax-(b-1)(a>0,a≠1)的图象不经过第二象限,则a,b必满足条件________________.
10、函数f(x)=ax的图象经过点(2,4),则f(-3)的值为________.
三、解答题
11、定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x).
(1)求f(1)的值;
(2)若f()>0,解不等式f(ax)>0.(其中字母a为常数).
12、2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,并回答下列问题.
周期数n
体积V(m3)
0
50 000×20
1
50 000×2
2
50 000×22
…
…
n
50 000×2n
(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少?
(2)根据报纸所述的信息,你估计3年前垃圾的体积是多少?
(3)如果n=-2,这时的n,V表示什么信息?
(4)写出n与V的函数关系式,并画出函数图象(横轴取n轴).
(5)曲线可能与横轴相交吗?为什么?
13、比较下列各组数中两个值的大小:
(1)0.2-1.5和0.2-1.7;
(2) 和;
(3)2-1.5和30.2.
以下是答案
一、选择题
1、C [由题意得
解得a=2.]
2、B [A中-4<0,不满足指数函数底数的要求,C中因有负号,也不是指数函数,D中的函数可化为y=a2·ax,ax的系数不是1,故也不是指数函数.]
3、A [由题意f(x)=1⊕2x=]
4、D [函数y=()x的图象上所有的点向下平移2个单位,就得到函数y=()x-2的图象,所以观察y=()x-2的图象知选D.]
5、B [作直线x=1与四个指数函数图象交点的坐标分别为(1,a)、(1,b)、(1,c)、(1,d),由图象可知纵坐标的大小关系.]
6、C [当x>0时,-x<0,∴f(-x)=3-x,
即-f(x)=()x,
∴f(x)=-()x.
因此有f(2)=-()2=-.]
7、B [该函数是偶函数.可先画出x≥0时,y=ax的图象,然后沿y轴翻折过去,便得到x<0时的函数图象.]
二、填空题
8、[0,8)
解析 y=8-23-x=8-23·2-x=8-8·()x
=8[1-()x].
∵x≥0,∴0<()x≤1,
∴-1≤-()x<0,
从而有0≤1-()x<1,因此0≤y<8.
9、a>1,b≥2
解析 函数y=ax-(b-1)的图象可以看作由函数y=ax的图象沿y轴平移|b-1|个单位得到.若01时,由于y=ax的图象必过定点(0,1),当y=ax的图象沿y轴向下平移1个单位后,得到的图象不经过第二象限.由b-1≥1,得b≥2.因此,a,b必满足条件a>1,b≥2.
10、
解析 由题意a2=4,∴a=2.
f(-3)=2-3=.
三、解答题
11、解 (1)令x=1,y=2,可知f(1)=2f(1),故f(1)=0.
(2)设0t,又f()>0,
∴f(x1)-f(x2)=f[()s]-f[()t]
=sf()-tf()=(s-t)f()>0,
∴f(x1)>f(x2).
故f(x)在(0,+∞)上是减函数.
又∵f(ax)>0,x>0,f(1)=0,
∴00时,00时,不等式解集为{x|00,所以V=50 000×2n>0,因此曲线不可能与横轴相交.
13、解 (1)考查函数y=0.2x.
因为0<0.2<1,
所以函数y=0.2x在实数集R上是单调减函数.
又因为-1.5>-1.7,
所以0.2-1.5<0.2-1.7.
(2)考查函数y=()x.因为0<<1,
所以函数y=()x在实数集R上是单调减函数.
又因为<,所以
(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2,
所以2-1.5<30.2.