- 245.50 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时达标检测(二十七) 平面向量基本定理及坐标表示
[练基础小题——强化运算能力]
1.若向量=(2,4),=(1,3),则=( )
A.(1,1) B.(-1,-1)
C.(3,7) D.(-3,-7)
解析:选B 由向量的三角形法则,=-=(1,3)-(2,4)=(-1,-1).故选B.
2.(2017·丰台期末)已知向量a=(3,-4),b=(x,y),若a∥b,则( )
A.3x-4y=0 B.3x+4y=0
C.4x+3y=0 D.4x-3y=0
解析:选C 由平面向量共线基本定理可得3y+4x=0,故选C.
3.已知向量a=(5,2),b=(-4,-3),c=(x,y),若3a-2b+c=0,则c=( )
A.(-23,-12) B.(23,12)
C.(7,0) D.(-7,0)
解析:选A 由题意可得3a-2b+c=3(5,2)-2(-4,-3)+(x,y)=(23+x,12+y)=(0,0),所以解得所以c=(-23,-12).
4.若AC为平行四边形ABCD的一条对角线,=(3,5),=(2,4),则=( )
A.(-1,-1) B.(5,9) C.(1,1) D.(3,5)
解析:选A 由题意可得==-=(2,4)-(3,5)=(-1,-1).
5.若三点A(1,-5),B(a,-2),C(-2,-1)共线,则实数a的值为________.
解析:=(a-1,3),=(-3,4),据题意知∥,∴4(a-1)=3×(-3),即4a=-5,∴a=-.
答案:-
[练常考题点——检验高考能力]
一、选择题
1.已知平面向量a=(1,-2),b=(2,m),若a∥b,则3a+2b=( )
A.(7,2) B.(7,-14) C.(7,-4) D.(7,-8)
解析:选B ∵a∥b,∴m+4=0,∴m=-4,∴b=(2,-4),∴3a+2b=3(1,-2)+2(2,-4)=(7,-14).
2.设向量a=(x,1),b=(4,x),且a,b方向相反,则x的值是( )
A.2 B.-2 C.±2 D.0
解析:选B 因为a与b方向相反,所以b=ma,m<0,则有(4,x)=m(x,1),∴解得m=±2.又m<0,
∴m=-2,x=m=-2.
3.已知在平行四边形ABCD中,=(2,8),=(-3,4),对角线AC与BD相交于点M,则=( )
A. B.
C. D.
解析:选B 因为在平行四边形ABCD中,有=+,=,所以=(+)=[(-3,4)+(2,8)]=×(-1,12)=,故选B.
4.设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相连能构成四边形,则向量d=( )
A.(2,6) B.(-2,6)
C.(2,-6) D.(-2,-6)
解析:选D 设d=(x,y),由题意知4a=4(1,-3)=(4,-12),4b-2c=4(-2,4)-2(-1,-2)=(-6,20),2(a-c)=2[(1,-3)-(-1,-2)]=(4,-2),又4a+(4b-2c)+2(a-c)+d=0,所以(4,-12)+(-6,20)+(4,-2)+(x,y)=(0,0),解得x=-2,y=-6,所以d=(-2,-6).
5.已知平行四边形ABCD中,=(3,7),=(-2,3),对角线AC与BD交于点O,则的坐标为( )
A. B.
C. D.
解析:选D =+=(-2,3)+(3,7)=(1,10).∴==.∴=.
6.在平面直角坐标系xOy中,已知A(1,0),B(0,1),C为坐标平面内第一象限内一点且∠AOC=,||=2,若=λ+μ,则λ+μ=( )
A.2 B. C.2 D.4
解析:选A 因为||=2,∠AOC=,所以C(,),又=λ+μ,所以(,)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=,λ+μ=2.
二、填空题
7.在△ABC中,点P在BC上,且=2,点Q是AC的中点,若 =(4,3),=(1,5),则=________.
解析:=-=(1,5)-(4,3)=(-3,2),∴=2=2(-3,2)=(-6,4).=+=(4,3)+(-6,4)=(-2,7),∴=3=3(-2,7)=(-6,21).
答案:(-6,21)
8.已知向量,和在正方形网格中的位置如图所示,若=λ+μ,则λμ=________.
解析:建立如图所示的平面直角坐标系xAy,则=(2,-2),=(1,2),=(1,0),由题意可知(2,-2)=λ(1,2)+μ(1,0),即解得所以λμ=-3.
答案:-3
9.P={a|a=(-1,1)+m(1,2),m∈R},Q={b|b=(1,-2)+n(2,3),n∈R}是两个向量集合,则P∩Q等于________.
解析:P中,a=(-1+m,1+2m),Q中,b=(1+2n,-2+3n).则得此时a=b=(-13,-23).
答案:{(-13,-23)}
10.在梯形ABCD中,已知AB∥CD,AB=2CD,M,N分别为CD,BC的中点.若=λ+μ,则λ+μ=________.
解析:由=λ+μ,得=λ·(+)+μ·(+),则+++ =0,得++=0,得+=0.又因为,不共线,所以由平面向量基本定理得解得所以λ+μ=.
答案:
三、解答题
11.如图,在梯形ABCD中,AD∥BC,且AD=BC,E,F分别为线段AD与BC的中点.设=a,=b,试用a,b为基底表示向量,,.
解:=++=-b-a+b=b-a,
=+=-b+=b-a,
=+=-b-=a-b.
12.给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上运动.若=x+y,其中x,y∈R,求x+y的最大值.
解:以O为坐标原点,所在的直线为x轴建立平面直角坐标系,如图所示,则A(1,0),B-,,设∠AOC=αα∈0,,则C(cos α,sin α),
由=x+y,得
所以x=cos α+sin α,y=sin α,
所以x+y=cos α+sin α=2sin,
又α∈,则α+∈.
所以当α+=,即α=时,x+y取得最大值2.
相关文档
- 高考数学专题复习练习第1讲 函数及2021-07-017页
- 高考数学专题复习练习:8_2 空间几2021-07-0115页
- 高考数学专题复习练习:3-1 专项基2021-07-016页
- 高考数学专题复习练习:综合测试卷2021-07-0112页
- 高考数学专题复习练习第1讲 变化2021-07-016页
- 高考数学专题复习练习第十一章 第2021-07-015页
- 高考数学专题复习练习:9-8-3 专项2021-07-017页
- 高考数学专题复习练习第十五章 第2021-07-014页
- 高考数学专题复习练习:2-3 专项基2021-07-015页
- 高考数学专题复习练习:综合检测卷(2021-07-0113页