• 140.11 KB
  • 2021-10-25 发布

七年级下数学课件《互逆命题》 (7)_苏科版

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
学而时习之,不亦说乎。 12.3  互逆命题(2) 七年级(下册)初中数学 学而时习之,不亦说乎。 在你已经学习过的命题中,举出两个命题,它们 不仅是逆命题,而且都是真命题. 12.3 互逆命题(2) 学而时习之,不亦说乎。 如图:  (1)如果AD∥EF,那么可以得到什么结论?  (2)如果∠EFC+∠C=180°,那么可以得到什 么结论呢?  (3)证明AD∥EF,需要什么条件?证明EF∥BC 呢?  (4)证明AD∥EF∥BC,需要什么条件? D CB FE A 12.3 互逆命题(2) 学而时习之,不亦说乎。 图形特殊的“位置关系”常常决定了图形具有 特殊的“数量关系”; 反过来,图形特殊的“数量关系”常常决定了 图形具有特殊的“位置关系”. 12.3 互逆命题(2) 学而时习之,不亦说乎。 例1 证明:平行于同一条直线的两条直线平行. 已知:如图,直线a、b、c 中,b∥a, c∥a. 求证:b∥c . a b c 证明:作直线a、b、c的截线d.    ∵b∥a (已知),    ∴∠2=∠1 (两直线平行,同位角相等),         ∵c∥a (已知),    ∴∠3=∠1 (两直线平行,同位角相等),        ∴∠2=∠3 (等量代换),    ∴b∥c (同位角相等,两直线平行). d 1 2 3 12.3 互逆命题(2) 学而时习之,不亦说乎。 例2 证明:直角三角形的两个锐角互余. 已知:如图,在△ABC 中,∠C=90°, 求证:∠A+∠B=90°. 证明:在△ABC 中, ∠A+∠B+∠C =180° (三角形三个内角的和等于180°), ∴∠A +∠B = 180°- ∠C(等式性质),    ∵ ∠C = 90°(已知), ∴∠A +∠B = 180°- 90°(等量代换), ∴ ∠A +∠B = 90°. A BC 说出命题“直角三角形的两个锐角互余”的 逆命题.这个命题是真命题吗?为什么? 12.3 互逆命题(2) 学而时习之,不亦说乎。 构造一个命题的逆命题,并证明这个命题 是真命题,我们就能探索并获得一些新的数学 结论. 这是一种逆向思考研究问题的方法. 12.3 互逆命题(2) 学而时习之,不亦说乎。 【练习】 1. (1)如图,AB∥CD,AB、DE 相交于点G, ∠B=∠D. 在下列括号内填写推理的依据: ∵AB∥CD (已知),   ∴∠EGA =∠D ( ).   又∵∠B =∠D (已知),   ∴∠EGA =∠B( ),   ∴DE∥BF ( ). (2)上述推理中,应用了哪两个互逆的真命题? C D A B E G F 12.3 互逆命题(2) 学而时习之,不亦说乎。   2.(1)已知:如图,在直角三角形ABC 中∠ACB       = 90°,D 是AB 上一点,且∠ACD =∠B .    求证:CD⊥AB.   (2)你在(1)的证明过程中应用了哪两个    互逆的真命题? A B C D 12.3 互逆命题(2) 学而时习之,不亦说乎。 【小结】 通过今天的学习,你有哪些收获与体会, 说出来和同学们分享. 12.3 互逆命题(2) 学而时习之,不亦说乎。 【课后作业】 1.课本P161习题12.3第3、4题; 2.思考题(选做) (1)已知:如图,在△ABC 中,点E 在AC上, 点F 在BC上,点D、G 在AB上,FG∥CD, ∠EDC =∠BFG . 求证:∠AED =∠ACB. (2)你在(1)的证明过程中应用了哪两个互逆的 真命题? A B C D E G F 12.3 互逆命题(2) 学而时习之,不亦说乎。