- 434.50 KB
- 2021-10-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
探索三角形全等的条件(1)
教学目标:
1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;
2、掌握三角形的”边边边”条件,了解三角形的稳定性.
3、在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.
教学重点:三角形”边边边”的全等条件
教学难点:用三角形”边边边”的条件进行有条理的思考并进行简单的推理.
教学方法:探索、归纳总结.
教学工具:练习卷,投影仪、电教平台.
准备活动:
1、全等三角形的__________相等,__________相等.
2、如图1,已知△AOC≌△BOD,则∠A=∠B,∠C=_______,______=∠2,对应边有AC=________,_______=OB,_______=OD.
3、如图2,已知△AOC≌△DOB,则∠A=∠D,∠C=_______,______=∠2,对应边有AC=________,OC=_______,AO=_______.
4、如图3,已知∠B=∠D,∠1=∠2,∠3=∠4,AB=CD,AD=CB,AC=CA.则△________≌△___________
5、判定两个三角形全等,依定义必须满足 ( )
(A)三边对应相等 (B)三角对应相等
(C)三边对应相等和三角对应相等 (D)不能确定
教学过程:
一、实验操作
1、画出一个三角形,使它的三个内角分别为40º,60º,80º,把你画的三角形与小组内画的进行比较,它们一定全等吗?
结论:_________________________________________________________.
2、画出一个三角形,使它的三边长分别为3cm,4cm,7cm,把你画的三角形与小组内画的进行比较,它们一定全等吗?
结论:_________________________________________________________.
二、巩固练习:
1、下列三角形全等的是________________________________________.
4
2、三边对应相等的两个三角形例全等,简写为_______或__________.
3、如图,AB=AC,BD=DC,求证:△ABD≌△ACD.
4、如图,AM=AN,BM=BN,求证:△AMB≌△ANB.
5、如图,AD=CB,AB=CD,求证:∠B=∠D.
6、如图,PA=PB,PC是△PAB的中线,∠A=55º,求:∠B的度数.
提高练习:
1、如图,AB=DC,BF=CE,AE=DF,你能找到一对全等的三角形吗?说明你的理由.
2、如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF你能找到哪两个三角形全等?说明你的理由.
3、如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有______对,并说明全等的理由.
4
探索三角形全等的条件(2)
教学目标:
1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;
2、掌握三角形的”角边角”“角角边”条件,了解三角形的稳定性.
3、在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.
教学重点:三角形”角边角”“角角边”的全等条件
教学难点:用三角形”角边角”“角角边”的条件进行有条理的思考并进行简单的推理.
教学工具:练习卷,投影仪.
准备活动:
1、三边对应相等的两个三角形全等,简写为________或_______.
2、如图,在△ABC中,AB=AC,AD是BC边上的中线,AD能平分∠BAC吗?你能说明理由吗?
3、如图,
(1)∵AC∥BD(已知),
∴∠_____=∠_____(___________________).
(2)∵AD∥BC(已知),
∴∠_____=∠_____(___________________).
4、如图3,
∵EA⊥AD,FD⊥AD(已知),
∴∠_________=∠________=90º(___________________).
教学过程:
一、探索练习:
1、如果”两角及一边”条件中的边是两角所夹的边,比如三角形的两个内角分别是60º和80º,它们所夹的边为2cm,你能画出这个三角形吗?你画的三角形与同伴画的一定全等吗?结论:___________________________________________________________.
2、如果”两角及一边”条件中的边是其中一角的对边,比如三角形两个内角分别是60º和45º,一条边长为3cm.你画的三角形与同伴画的一定全等吗?
结论:___________________________________________________________.
二、巩固练习:
1、两角和它们的夹边对应相等的两个三角形全等,简写成_______或_________.
2、两角和其中一角的对边对应相等的两个三角形全等,简写成_______或_________.
3、如图,AB=AC,∠B=∠C,你能证明△ABD≌△ACE吗?
4、如图,已知AC与BD交于点O,AD∥BC,且AD=BC,你能说明BO=DO吗?
5、如图,∠B=∠C,AD平分∠BAC,你能证明△ABD≌△ACD?
4
若BD=3cm,则CD有多长?
6、如图,在△ABC中,BE⊥AD于E,CF⊥AD于F,且BE=CF,那么BD与DC相等吗?你能说明理由吗?
解:BD=DC.
7、如图,已知AB=CD,∠B=∠C,你能说明△ABO≌△DCO吗?
三、提高练习:
1、如图,AB∥CD,∠A=∠D,BF=CE,∠AEB=110º,求∠DCF的度数.
2、如图,在Rt△ACB中,∠C=90º,BE是角平分线,ED⊥AB于D,
且BD=AD,试确定∠A的度数.
小结:
掌握三角形的”角边角”“角角边”条件,能够进行有条理的思考并进行简单的推理.
作业:
课本P143习题:1,2,3.
教学后记:
学生不能很好地掌握三角形的”角边角”“角角边”条件,对”角边角”和”角角边”容易混淆,也不能够进行有条理的思考并进行简单的推理.
4
相关文档
- 七年级下册数学教案1-2-2 第2课时 2021-10-252页
- 北师大版数学七年级上册《应用一元2021-10-254页
- 2014年秋七年级(人教版)数学教案:2_22021-10-252页
- 青岛初中数学七年级上册《3有理数2021-10-258页
- 青岛初中数学七年级上册有理数的乘2021-10-2516页
- 青岛初中数学七年级上册《1线段的2021-10-2532页
- 2020-2021学年初一数学上册章节同2021-10-254页
- 七年级下册数学教案1-2-2 第1课时 2021-10-252页
- 2020年秋暑期专项练习 初一数学几2021-10-255页
- 2014年秋七年级(人教版)数学教案:2_12021-10-252页