• 1.91 MB
  • 2021-10-27 发布

2019年春八年级数学下册第十九章一次函数19-3课题学习选择方案课件

  • 11页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
19.3 课题学习 选择方案 1.应用函数解决实际问题的方法: 解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响 其他变量的值的变量作为   ,然后根据问题的条件寻求可以反映实际问题的   ,以此作为解决问题的数学模型. 2.利用函数模型解决方案选择问题的步骤: (1)建立函数模型,确定函数   .  (2)结合解不等式或函数图象确定自变量的   .  (3)利用函数的性质选择方案.  自变量 函数 解析式 取值范围 探究点一:方案的选择 【例1】 (2018天津)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证, 每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证, 每次游泳付费9元. 设小明计划今年夏季游泳的次数为x(x为正整数). (1)根据题意,填写下表: (2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较 多? (3)当x>20时,小明选择哪种付费方式更合算?并说明理由. 游泳次数 10 15 20 … x 方式一的 总费用( 元) 150 175    …    方式二的 总费用( 元) 90 135       解:(1)当x=20时,方式一的总费用为100+20×5=200(元),方式二的总费用为 20×9=180(元), 当游泳次数为x时,方式一的总费用为(100+5x)元,方式二的总费用为9x元. 【导学探究】 1.小明计划今年夏季游泳的次数为x,方案一的费用为100+   ,方案二的费用为   .  2.选择哪种付费方式合算,需要根据   的取值讨论得出结论.  (2)选择方式一时,令100+5x=270,解得x=34. 选择方式二时,令9x=270,解得x=30; 因为34>30,所以选择方式一付费,他游泳的次数比较多. 5x 9x 自变量 (3)令100+5x<9x,得x>25,令100+5x=9x,得x=25,令100+5x>9x,得x<25. 所以当2025时,小明选择方式一付费更合算. 借助一次函数解决合算问题,可先列出函数解析式,通过比较函 数值的大小列出不等式或方程,根据不同的情况作出判断. 探究点二:应用一次函数的性质求最大(小)值 【例2】 (2018怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进 A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购 买两种树苗所需费用为y元. (1)求y与x的函数解析式,其中0≤x≤21; 【导学探究】 1.据购买两种树苗所需费用=   +   . A种树苗费用 B种树苗费用 解:(1)由题知y=90x+70(21-x)=20x+1 470, 所以y与x的函数解析式为y=20x+1 470(0≤x≤21,且x为整数). 解:(2)由(1)知y=20x+1 470,因为k=20>0,所以y随x的增大而增大, 因为21-x