- 13.81 MB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第 33 课时
与圆有关的计算
第六单元 圆
基
础
知
识
巩
固
高
频
考
向
探
究
考点一 正多边形和圆的相关计算
考点聚焦
设正n边形的外接圆半径为R,边长为a,边心距为r.
基
础
知
识
巩
固
高
频
考
向
探
究
基
础
知
识
巩
固
高
频
考
向
探
究
基
础
知
识
巩
固
高
频
考
向
探
究
考点二 弧长与扇形面积公式
基
础
知
识
巩
固
高
频
考
向
探
究
考点三 阴影部分面积的计算
1.规则图形的面积,直接利用对应公式计算.
2.不规则图形的面积,要将图形的面积转化为可求图形的面积的和或差,常用方
法有:(1)割补法;(2)拼凑法;(3)等积转化法;(4)平移法;(5)旋转法.
基
础
知
识
巩
固
高
频
考
向
探
究
图形
圆锥简介
(1)h是圆锥的高;
(2)l是圆锥的母线,其长为侧面展开后所得扇形的⑥ ;
(3)r是底面圆半径;
(4)圆锥的侧面展开图是扇形,其弧长等于圆锥底面⑦
圆锥的侧面积 S侧=⑧
圆锥的全面积 S全=S侧+S底=πrl+πr2
考点四 圆锥的侧面积与全面积
半径
圆的周长
πrl
基
础
知
识
巩
固
高
频
考
向
探
究
题组一 必会题
对点演练
1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为 .
2.一个扇形的半径为6,圆心角为120°,则该扇形的面积是 .
3.[2019·南平质检]已知扇形的弧长为4π,半径为8,则此扇形的面积为 .
3π
12π
16π
基
础
知
识
巩
固
高
频
考
向
探
究
图33-1
2π
基
础
知
识
巩
固
高
频
考
向
探
究
5.[2019·泉州石狮一模]若一个扇形的圆
心角为120°,面积为6π,则这个扇形的半径
为 .
基
础
知
识
巩
固
高
频
考
向
探
究
题组二 易错题
【失分点】
未弄清圆锥侧面展开图的面积、弧长与圆锥的关系导致做题时出错.
6.已知圆锥的底面直径为4 cm,母线长为10 cm,则这个圆锥的侧面积是 ( )
A.20π cm2 B.20 cm2
C.40π cm2 D.40 cm2
A
基
础
知
识
巩
固
高
频
考
向
探
究
考向一 弧长的计算
[答案] 6π 例1[2019·泰州]如图33-2,分别以正三角形的3
个顶点为圆心,边长为半径画弧,三段弧围成的
图形称为莱洛三角形.若正三角形的边长为
6 cm,则该莱洛三角形的周长为 cm.
图33-2
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
图33-3
基
础
知
识
巩
固
高
频
考
向
探
究
图33-4
2.[2019·泉州、晋江季延初级中学模拟]如图33-4,在扇形OAB中,∠AOB=100°,半
径OA=6,将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点D处,折痕交
OB于点C,则弧BD的长为 .
基
础
知
识
巩
固
高
频
考
向
探
究
基
础
知
识
巩
固
高
频
考
向
探
究
考向二 面积的计算 微专题
角度1 直接分割求面积
图33-5
基
础
知
识
巩
固
高
频
考
向
探
究
基
础
知
识
巩
固
高
频
考
向
探
究
【方法点析】可选择用割补法将不规则图形转化成常见的规则的图形进行计算.
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
[2019·三明质检]如图33-6,在矩形ABCD中,AD=2,以点A为圆心,AD长为半径画
弧,交BC边于点E,若E恰为BC的中点,则图中阴影部分的面积为 .
图33-6
基
础
知
识
巩
固
高
频
考
向
探
究
角度2 等积转化求面积
图33-7
基
础
知
识
巩
固
高
频
考
向
探
究
[答案]A
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
1.[2019·龙岩质检]如图33-8,AB是☉O的直径,点E是弧BF的中点,过点E的切线分
别交AF,AB的延长线于点D,C,若∠C=30°, ☉O的半径是2,则图中阴影部分的面
积是 .
图33-8
基
础
知
识
巩
固
高
频
考
向
探
究
基
础
知
识
巩
固
高
频
考
向
探
究
基
础
知
识
巩
固
高
频
考
向
探
究
图33-9
2.[2019·福建15题]如图33-9,边长为2的正方
形ABCD的中心与半径为2的☉O的圆心重
合,E,F分别是AD,BA的延长线与☉O的交点,
则图中阴影部分的面积为 .(结果
保留π)
[答案] π-1
基
础
知
识
巩
固
高
频
考
向
探
究
角度3 与旋转有关的面积问题
图33-10
例4 如图33-10,C为半圆内一点,O为圆心,直径AB长为2 cm,∠BOC=60°, ∠BCO
=90°,将△BOC绕圆心O逆时针旋转至△B'OC',使点C'落在OA上,则边BC扫过区域
(图中阴影部分)的面积为 cm2.
基
础
知
识
巩
固
高
频
考
向
探
究
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
如图33-11,将四边形ABCD绕顶点A顺时针旋
转45°至四边形AB'C'D'的位置,若AB=16 cm,
则图中阴影部分的面积为 .
图33-11
[答案] 32π cm2
基
础
知
识
巩
固
高
频
考
向
探
究
考向三 运动路径的计算
图33-12
例5 如图33-12,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线
l作无滑动翻滚,当点A第一次翻滚到点A1的位置时,则点A经过的路线长为
.
基
础
知
识
巩
固
高
频
考
向
探
究
[答案] 6π
基
础
知
识
巩
固
高
频
考
向
探
究
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
图33-13
[答案] A
基
础
知
识
巩
固
高
频
考
向
探
究
图33-14
2.[2018·安徽模拟]如图33-14,一个圆作滚动运动,它从A位置开始,滚过与它相同
的其他六个圆的上部,到达B位置.则该圆共滚过 圈.
基
础
知
识
巩
固
高
频
考
向
探
究
考向四 圆与正多边形的相关计算
图33-15
基
础
知
识
巩
固
高
频
考
向
探
究
[答案] D
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
图33-16
B
基
础
知
识
巩
固
高
频
考
向
探
究
考向五 与圆锥的侧面展开图有关的问题
例7 (1)已知圆锥的母线长为4,底面半径
为2,则圆锥的侧面积为 ;
(2)将一个圆心角为120°,半径为6 cm的扇
形围成一个圆锥的侧面,则这个圆锥的底
面半径为 ;
(3)如果圆锥的底面周长是20π,侧面展开
后所得的扇形的圆心角为120°,则其侧面
积为 (结果用含π的式子表示).
[答案] (1)8π (2)2 cm (3)300π
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
图33-17
1.如图33-17,在Rt△ABC中,AC=5 cm, BC=
12 cm,∠ACB=90°,把Rt△ABC绕BC所在
的直线旋转一周得到一个几何体,则这个
几何体的侧面积为 ( )
A.60π cm2
B.65π cm2
C.120π cm2
D.130π cm2
[答案] B
基
础
知
识
巩
固
高
频
考
向
探
究
2.若圆锥的侧面积是15π,母线长是5,则该圆
锥底面圆的半径是 .
[答案] 3
相关文档
- 数学冀教版九年级上册教案28-1圆的2021-11-115页
- 苏教版数学九年级上册教案2-1圆(2)2021-11-113页
- 数学冀教版九年级上册课件28-1圆的2021-11-1118页
- 九年级数学上册第二十四章圆24-1圆2021-11-1130页
- 苏教版数学九年级上册教案2-1圆(1)2021-11-102页
- 苏教版数学九年级上册课件2-1圆(1)2021-11-1012页
- 九年级数学上册第二十四章圆24-1圆2021-11-102页
- 九年级数学上册第二十四章圆24-1圆2021-11-1025页
- 九年级上册青岛版数学教案3-1圆的2021-11-104页
- 苏教版数学九年级上册课件2-1圆(2)2021-11-1017页