- 203.50 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 函数相等
复 习
1.函数的概念.
2.函数的定义域的求法.
导入新课
思路1.当实数a、b的符号相同,绝对值相等时,实数a=b;当集合A、B中元素完全相同时,集合A=B;那么两个函数满足什么条件才相等呢?引出课题:函数相等.
思路2.我们学习了函数的概念,y=x与y=是同一个函数吗?这就是本节课学习的内容,引出课题:函数相等.
推进新课
新知探究
提出问题
①指出函数y=x+1的构成要素有几部分?
②一个函数的构成要素有几部分?
③分别写出函数y=x+1和函数y=t+1的定义域和对应关系,并比较异同.
④函数y=x+1和函数y=t+1的值域相同吗?由此可见两个函数的定义域和对应关系分别相同,值域相同吗?
⑤由此你对函数的三要素有什么新的认识?
讨论结果:①函数y=x+1的构成要素为:定义域R,对应关系x→x+1,值域是R.
②一个函数的构成要素为:定义域、对应关系和值域,简称为函数的三要素.其中定义域是函数的灵魂,对应关系是函数的核心.当且仅当两个函数的三要素都相同时,这两个函数才相同.
③定义域和对应关系分别相同.
④值域相同.
⑤如果两个函数的定义域和对应关系分别相同,那么它们的值域一定相等.因此只要两个函数的定义域和对应关系分别相同,那么这两个函数就相等.
应用示例
思路1
1.下列函数中哪个与函数y=x相等?
(1)y=()2;(2)y=;(3)y=;(4)y=.
活动:
让学生思考两个函数相等的条件后,引导学生求出各个函数的定义域,化简函数关系式为最简形式.只要它们定义域和对应关系分别相同,那么这两个函数就相等.
解:函数y=x的定义域是R,对应关系是x→x.
(1)∵函数y=()2的定义域是[0,+∞),
∴函数y=()2与函数y=x的定义域R不相同.
∴函数y=()2与函数y=x不相等.
(2)∵函数y=的定义域是R,
∴函数y=与函数y=x的定义域R相同.
又∵y==x,
∴函数y=与函数y=x的对应关系也相同.
∴函数y=与函数y=x相等.
(3)∵函数y=的定义域是R,
∴函数y=与函数y=x的定义域R相同.
又∵y==|x|,
∴函数y=与函数y=x的对应关系不相同.
∴函数y=与函数y=x不相等.
(4)∵函数y=的定义域是(-∞,0)∪(0,+∞),
∴函数y=与函数y=x的定义域R不相同,
∴函数y=()2与函数y=x不相等.
点评:本题主要考查函数相等的含义.讨论函数问题时,要保持定义域优先的原则.对于判断两个函数是否是同一个函数,要先求定义域,若定义域不同,则不是同一个函数;若定义域相同,再化简函数的解析式,若解析式相同(即对应关系相同),则是同一个函数,否则不是同一个函数.
变式训练
判断下列各组的两个函数是否相同,并说明理由.
①y=x-1,x∈R与y=x-1,x∈N;
②y=与y=·;
③y=1+与u=1+;
④y=x2与y=x;
⑤y=2|x|与y=
⑥y=f(x)与y=f(u).
是同一个函数的是________(把是同一个函数的序号填上即可).
解:只需判断函数的定义域和对应法则是否均相同即可.
①前者的定义域是R,后者的定义域是N,由于它们的定义域不同,故不是同一个函数;
②前者的定义域是{x|x≥2或x≤-2},后者的定义域是{x|x≥2},它们的定义域不同,故不是同一个函数;
③定义域相同均为非零实数,对应法则相同都是自变量取倒数后加1,那么值域必相同,故是同一个函数;
④定义域是相同的,但对应法则不同,故不是同一个函数;
⑤函数y=2|x|=则定义域和对应法则均相同,那么值域必相同,故是同一个函数;
⑥定义域相同,对应法则相同,那么值域必相同,故是同一个函数.
故填③⑤⑥.
思路2
1.判断下列函数f(x)与g(x)是否表示同一个函数,说明理由.
(1)f(x)=(x-1)0,g(x)=1.
(2)f(x)=x-1,g(x)=.
(3)f(x)=x2,g(x)=(x+1)2.
(4)f(x)=x2-1,g(u)=u2-1.
活动:学生思考函数的概念及其三要素,教师引导学生先判断定义域是否相同,当定义域相同时,再判断它们的对应关系是否相同.
解:(1)∵f(x)=(x-1)0的定义域是{x|x≠1},函数g(x)=1的定义域是R,
∴函数f(x)=(x-1)0与函数g(x)=1的定义域不同.
∴函数f(x)=(x-1)0与函数g(x)=1不表示同一个函数.
(2)∵f(x)=x-1的定义域是R,g(x)==的定义域是R,
∴函数f(x)=x-1与函数g(x)=的定义域相同.
又∵g(x)===|x-1|,
∴函数f(x)=x-1与函数g(x)=的对应关系不同.
∴函数f(x)=x-1与函数g(x)=不表示同一个函数.
(3)很明显f(x)=x2和g(x)=(x+1)2的定义域都是R,
又∵f(x)=x2和g(x)=(x+1)2的对应关系不同,
∴函数f(x)=x2和g(x)=(x+1)2不表示同一个函数.
(4)很明显f(x)=x2-1与g(u)=u2-1的定义域都是R,
又∵f(x)=x2-1与g(u)=u2-1的对应关系也相同,
∴函数f(x)=x2-1与g(u)=u2-1表示同一个函数.
变式训练
1.2007湖北黄冈模拟,理13已知函数f(x)满足f(ab)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=_______.
解:由题意得f(36)=f(6×6)=f(6)+f(6)=2f(6)=2f(2×3)=2[f(2)+f(3)]=2p+2q.
答案:2p+2q
2.函数y=f(x)的图象与直线x=2的公共点共有( )
A.0个 B.1个 C.0个或1个 D.不确定
答案:C
2.设y是u的函数y=f(u),而u又是x的函数u=g(x),设M表示u=g(x)的定义域,N是函数y=f(u)的值域,当M∩N≠时,则y成为x的函数,记为y=f[g(x)].这个函数叫做由y=f(u)及u=g(x)复合而成的复合函数,它的定义域为M∩N,u叫做中间变量,f称为外层函数,g称为内层函数.指出下列复合函数外层函数和内层函数,并且使外层函数和内层函数均为基本初等函数.
(1)y=;(2)y=(x2-2x+3)2;(3)y=-1.
活动:让学生思考有哪些基本初等函数,它们的解析式是什么.
解:(1)设y=,u=x+1,
即y=的外层函数是反比例函数y=,内层函数是一次函数u=x+1.
(2)设y=u2,u=x2-2x+3,
即y=(x2-2x+3)2的外层函数是二次函数y=u2,内层函数是二次函数u=x2-2x+3.
(3)设y=u2+u-1,u=,
即y=-1的外层函数是二次函数y=u2+u-1,内层函数是反比例函数u=.
点评:到目前为止,我们所遇到的函数大部分是复合函数,并且是由正、反比例函数和一、二次函数复合而成的,随着学习的深入,我们还会学习其他复合函数.复合函数是高考重点考查的内容之一,应引起我们的重视.
变式训练
1.2004重庆高考,文2设f(x)=,则=_______.
答案:-1
2.2006安徽高考,理15函数f(x)对任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]=.
分析:∵函数f(x)对任意实数x满足条件f(x+2)= ,∴f(x+4)=f[(x+2)+1]==f(x).
∴f(1)=f(1+4)=f(5).
又∵f(1)=-5,∴f(5)=-5.
∴f[f(5)]=f(-5)=f(-5+4)=f(-1)=f(-1+4)=f(3)=f(1+2)==.
答案:
知能训练
1.下列给出的四个图形中,是函数图象的是( )
A.① B.①③④ C.①②③ D.③④
图1-2-1-2
答案:B
2.函数y=f(x)的定义域是R,值域是[1,2],则函数y=f(2x-1)的值域是_______.
答案:[1,2]
3.下列各组函数是同一个函数的有________.
①f(x)=,g(x)=x;②f(x)=x0,g(x)=;
③f(x)=,g(u)=;④f(x)=-x2+2x,g(u)=-u2+2u.
答案:②③④
拓展提升
问题:函数y=f(x)的图象与直线x=m有几个交点?
探究:设函数y=f(x)定义域是D,
当m∈D时,根据函数的定义知f(m)唯一,
则函数y=f(x)的图象上横坐标为m的点仅有一个(m,f(m)),
即此时函数y=f(x)的图象与直线x=m仅有一个交点;
当mD时,根据函数的定义知f(m)不存在,
则函数y=f(x)的图象上横坐标为m的点不存在,
即此时函数y=f(x)的图象与直线x=m没有交点.
综上所得,函数y=f(x)的图象与直线x=m有交点时仅有一个,或没有交点.
课堂小结
(1)复习了函数的概念,总结了函数的三要素;
(2)学习了复合函数的概念;
(3)判断两个函数是否是同一个函数.
作业
1.设M={x|-2≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示以集合M为定义域,N为值域的函数关系是( )
图1-2-1-3
分析:A中,当0
相关文档
- 高中数学必修1教案:第四章(第12课时)2021-06-114页
- 高中数学必修1教案3_1_1方程的根与2021-06-116页
- 高考数学人教A版(理)一轮复习:小题专2021-06-116页
- 高中数学必修1教案:第一章(第21课时2021-06-116页
- 高中数学必修1教案:第二章(第5课时)函2021-06-117页
- 高中数学必修1教案1_3_2函数的奇偶2021-06-117页
- 高中数学必修1教案:第一章(第9课时)2021-06-115页
- 高中数学必修1教案:第四章(第13课时)2021-06-114页
- 【数学】2020届江苏一轮复习通用版2021-06-116页
- 高中数学必修1教案:第一章(第4课时)2021-06-114页