- 80.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§1.1.1 算法的概念
珠海市斗门和风中学 邝国均
【教学目标】:
(1) 了解算法的含义,体会算法的思想。
(2) 能够用自然语言叙述算法。
(3) 掌握正确的算法应满足的要求。
(4) 会写出解线性方程(组)的算法。
(5) 会写出一个求有限整数序列中的最大值的算法。
【教学重点】算法的含义、解二元一次方程组和判断一个数为质数的算法设计。.
【教学难点】把自然语言转化为算法语言。.
【学法与教学用具】:
学法:
1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:计算机,TI-voyage200图形计算器
【教学过程】
一、本章章头图说明
章头图体现了中国古代数学与现代计算机科学的联系,它们的基础都是“算法”。
算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
古代的计算工具:算筹与算盘.
20世纪最伟大的发明:计算机,计算机是强大的实现各种算法的工具。
例1:解二元一次方程组:
分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.
解:第一步:② - ①×2,得: 5y=3; ③
6
第二步:解③得 ;
第三步:将代入①,得 .
学生探究:对于一般的二元一次方程组来说,上述步骤应该怎样进一步完善?
老师评析:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法。下面写出求方程组的解的算法:
例2:写出求方程组的解的算法.
解:第一步:②×a1 - ①×a2,得: ③
第二步:解③得 ;
第三步:将代入①,得
利用TI-voyage200图形计算器演示:(吸引学生的注意力)
运行结果:
(其中输入a1=1,b1=-2,m1=-1,a2=2
b2=1,m2=1,当然可输入其它数值)
算法概念:
在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
说明:
1.“算法”没有一个精确化的定义,教科书只对它作了描述性的说明.
2. 算法的特点:
(1)有限性:
一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
(2)确定性:
6
算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
(3)顺序性与正确性:
算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
(4)不唯一性:
求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
(5)普遍性:
很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.
例题讲评:
例3、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.
分析:(1)质数是只能被1和自身整除的大于1的整数.
(2)要判断一个大于1的整数n是否为质数,只要根据质数的定义,用比这个整数小的数去除n,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.
解:算法:
第一步:判断n是否等于2.若n=2,则n是质数;若n>2,则执行第二步.
第二步:依次从2~(n-1)检验是不是n的因数,即整除n的数.若有这样的数,则n不是质数;若没有这样的数,则n是质数.
说明:本算法是用自然语言的形式描述的.设计算法一定要做到以下要求:
(1)写出的算法必须能解决一类问题,并且能够重复使用.
(2)要使算法尽量简单、步骤尽量少.
(3)要保证算法正确,且计算机能够执行.
利用TI-voyage200图形计算器演示:(学生已经被吸引住了)
运行
例4、.用二分法设计一个求方程的近似根的算法.
分析:该算法实质是求的近似值的一个最基本的方法.
解:设所求近似根与精确解的差的绝对值不超过0.005,算法:
第一步:令.因为,所以设x1=1,x2=2.
第二步:令,判断f(m)是否为0.若是,则m为所求;若否,则继续判断大于0还是小于0.
第三步:若,则x1=m;否则,令x2=m.
6
第四步:判断是否成立?若是,则x1、x2之间的任意值均为满足条件的近似根;若否,则返回第二步.
说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,1.41796875)中的实数都满足假设条件的原方程是近似根.
利用TI-voyage200图形计算器演示:
运行结果:
练习1:
写出解方程x2-2x-3=0的一个算法。
解:算法1:
第一步:移项,得x2-2x-3=0; ①
第二步:①式两边同加1并配方,得(x-1)2=4; ②
第三步:②式两边开方,得x-1=±2; ③
第四步:解③得x=3或x=-1。
算法2:
第一步:计算方程的判别式判断其符号△=22+4×3=16>0;
第二步:将a=1,b=-2,c=-3代入求根公式x=,
得x1=3,x2=-1
评析:比较两种算法,算法2更简单,步骤少,所以利用公式解决问题是最理想、合算的算法。因此在寻求算法的过程中,首先是利用公式。
下面设计一个求一般的一元二次方程ax2+bx+c=0的根的算法如下:
第一步:计算△=b2+4ac;
第二步:若△<0;
第三步:输出方程无实根;
第四步:若△≥0;
6
第五步:计算并输出方程根x1,2=。
练习2、求1×3×5×7×9×11的值,写出其算法。
第一步,先求1×3,得到结果3;
第二步,将第一步所得结果3再乘以5,得到结果15;
第三步,再将15乘以7,得到结果105;
第四步,再将105乘以9,得到945;
第五步,再将945乘以11,得到10395,即是最后结果。
评析:求解某个问题的算法不同于求解一个具体问题的方法,算法必须能够解决一类问题,并且能够重复使用;算法过程要能一步一步地执行,每一步操作必须确切,能在有限步后得出结果。
练习3、有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题。
分析:由于两个墨水瓶中的墨水不能直接交换,故可以考虑通过引入第三个空墨水瓶的办法进行交换。
解:算法步骤如下:
第一步:取一只空的墨水瓶,设其为白色;
第二步:将黑墨水瓶中的蓝墨水装入白瓶中;
第三步:将蓝墨水瓶中的黑墨水装入黑瓶中;
第四步:将白瓶中的蓝墨水装入蓝瓶中;
第五步:交换结束。
评析:对于这种非数值性问题的算法设计问题,应当首先建立过程模型,根据过程设计步骤,完成算法。
小结
1、算法概念和算法的基本思想
(1)算法与一般意义上具体问题的解法的联系与区别;
(2)算法的五个特征。
2、利用算法的思想和方法解决实际问题,能写出一此简单问题的算法
3、两类算法问题
(1)数值性计算问题,如:解方程(或方程组),解不等式(或不等式组),套用公式判断性的问题,累加,累乘等一类问题的算法描述,可通过相应的数学模型借助一般数学计算方法,分解成清晰的步骤,使之条理化即可。
(2)非数值性计算问题,如:排序、查找、变量变换、文字处理等需先建立过程模型,通过模型进行算法设计与描述。
4、利用TI-voyage200图形计算器演示时,开始学生看,想,探究,然后模范、创新。图形计算器为学生创建一个自我发挥的平台。
作业: (课本第4页练习)
6
1、任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.
解:算法步骤:
第一步:输入任意一个正实数r;
第二步:计算以r为半径的圆的面积:;
第三步:输出圆的面积S.
2、任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.
解:算法步骤:
第一步:依次以2~(n-1)为除数去除n,检查余数是否为0.若是,则是n的因数;若不是,则不是n的因数;
第二步:在n的因数中加入1和n;
第三步:输出n的所有因数.
利用TI-voyage200图形计算器演示:
运行结果:
(即32的公因数为1,2,4,8,16,32)
6
相关文档
- 高中数学(人教a版)选修4-5课时提升卷2021-06-115页
- 2020高中数学 第1章 点、直线、面2021-06-116页
- 2020高中数学 每日一题之快乐暑假 2021-06-113页
- 高中数学:3_2 《直线的方程》同步测2021-06-115页
- 高中数学必修5:9_示范教案(2_5_2 求2021-06-117页
- 高中数学讲义微专题60 三视图——2021-06-116页
- 高中数学(人教版必修2)配套练习 第四2021-06-114页
- 2018人教A版高中数学必修三1.1.2《2021-06-113页
- 高中数学常见题型解法归纳及反馈检2021-06-114页
- 高中数学必修2教案:平面直角坐标系2021-06-114页