- 193.09 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
8.1(2)向量的坐标表示及其运算(2)
一、教学内容分析
向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是8.1向量的坐标及其运算的第二课时,一方面把“形”与 “数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为下节课定比分点(三点共线)的教学提供基础.
二、教学目标设计
1.掌握向量模的求法,知道模的几何意义;
2.理解并掌握两个非零向量平行的充要条件,巩固加深充要条件的证明方式;
3.会用平行的充要条件解决点共线问题;
4.感悟向量作为工具解题的优越性.
三、教学重点及难点
课本例5的演绎证明;
分类思想,数形结合思想在解决问题时的运用;
特殊——一般——特殊的探究问题意识.
问题一引入
四、教学流程设计
向量平行的充要条件
三点共线的充要条件
问题二解决
问题三解决
课堂小结
作业反思,形成问题
创设问题情景
问题探究反思
知识拓展应用
课外探索学习
模的求法
五、教学过程设计
创设问题情景
问题一、已知向量.
(1)在坐标平面上,画出向量;并求=
(2)若向量终点Q坐标为,则向量的始点P坐标为_______;
(3)向量的模与两点P、Q间距离关系是 .
若 ,则
练习1:已知向量,求
[说明] 在问题一中,先给出向量,要求学生在坐标平面上画出向量,增强数形结合的解题意识,感悟向量的模即平面上两点的距离.由此发现并掌握向量模的求法及几何意义.安排(2)小问的目的在于复习巩固位置向量与自由向量的概念,体会并感悟到任何一个自由向量都可转化为位置向量.通过自由向量与位置向量的学习,引出向量平行的概念.
向量平行的概念:对任意两个向量,若存在一个常数,使得成立,则两向量与向量平行,记为:.
问题探究反思
问题二.在坐标平面上描出下列三点,完成下列问题:
(1)请把下列向量的坐标与模填在表格内:
向量坐标
(1,2)
(2,4)
(3,6)
向量的模
(2)通过画图,你得出什么结论?
三点A、B、C在一条直线上
(3)分析表格中向量的模,你发现了什么?
(4)分析表格中向量,你还发现了什么?
,,
[说明] 养成解题后反思的习惯,总结如何判断三点共线?
方法一:计算三个向量的模长关系.
方法二:看两个非零向量之间是否存在非零常数.
(5)分析表格中向量坐标,你又发现了什么?
向量坐标之间存在比例关系.
思考:如果向量用坐标表示为,则是的( )条件.
A、充要 B、必要不充分
C、充分不必要 D、既不充分也不必要
由此,通过改进引出
课本例5 若是两个非零向量,且,
则的充要条件是.
分析:代数证明的方法与技巧,严密、严谨.
证明:分两步证明,
(Ⅰ)先证必要性:
非零向量存在非零实数,使得,即
,化简整理可得:,消去即得
(Ⅱ)再证充分性:
(1)若,则、、、全不为零,显然有,即
(2)若,则、、、中至少有两个为零.
①如果,则由是非零向量得出一定有,,
又由是非零向量得出,从而,此时存在使,即
②如果,则有,同理可证
综上,当时,总有
所以,命题得证.
[说明] 本题是一典型的代数证明,推理严密,层次清楚,要求较高,是培养数学思维能力的良好范例.
练习2:
1.已知向量,,且,则x为_________;
2.设=(x1,y1),=(x2,y2),则下列与共线的充要条件的有( )
① 存在一个实数λ,使=λ或=λ; ②;③(+)//(-)
A、0个 B、1个 C、2个 D、3个
3.设为单位向量,有以下三个命题:(1)若为平面内的某个向量,则;(2)若与平行,则;(3)若与平行且,则.上述命题中,其中假命题的序号为 ;
[说明] 安排此组练习快速巩固所学基础知识,当堂消化,及时反馈.
知识拓展应用
问题三:已知向量,且A、B、C三点共线,则k=____
(学生讨论与分析)
[说明] 三点共线的证明方法总结:21世纪教育网
法一:利用向量的模的等量关系[
法二:若A、B、C三点满足,则A、B、C三点共线.
*法三:若A、B、C三点满足,当时,A、B、C三点共线.
课外探索学习
课外作业:
1.练习册P38:4、5、6、7
补充作业:
1.关于非零向量和,有下列四个命题:
(1)“”的充要条件是“和的方向相同”;
(2)“” 的充要条件是“和的方向相反”;
(3)“” 的充要条件是“和有相等的模”;
(4)“” 的充要条件是“和的方向相同”;21世纪教育网
其中真命题的个数是 ( )
A. 1 B. 2 C. 3 D. 4
2.质点P在平面上作匀速直线运动,速度向量=(4,-3)(即点P的运动方向与相同,且每秒移动的距离为|v|个单位.设开始时点P的坐标为(-10,10),则5秒后该质点P的坐标为( )
A.(-2,4) B.(-30,25) C.(10,-5)D.(5,-10)]
3.已知向量,则的最大值为 .
4.设C、D为直线上不重合的两点,对于坐标平面上动点,若存在实数使得,则= .
5.在直角坐标系xOy中,已知点和点,若点C在∠AOB的平分线上,且,则=_________.
6.已知=(5,4),=(3,2),求与2-3平行的单位向量.
相关文档
- 高中数学选修2-2课堂达标效果检测 2021-06-162页
- 高中数学必修5教案:3_4基本不等式2021-06-1612页
- 2020_2021学年新教材高中数学第五2021-06-1645页
- 【数学】2020届一轮复习人教B版空2021-06-166页
- 高中数学选修2-3课件2_《两个基本2021-06-1614页
- 高中数学 必修4平面向量2.3.3 平面2021-06-1614页
- 高中数学选修2-2课件3_1_22021-06-1649页
- 上海市浦东新区2019-2020学年高一2021-06-1615页
- 高中数学人教a版选修4-1课时跟踪检2021-06-165页
- 高中数学选修2-1课件2_3_2抛物线的2021-06-1620页