第十章测评
(时间:120分钟 满分:150分)
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.“某点P到点A(-2,0)和点B(2,0)的距离之和为5”这一事件是( )
A.随机事件 B.不可能事件
C.必然事件 D.以上都不对
解析由于某点P到点A(-2,0)和点B(2,0)的距离之和大于等于4,故这一事件是随机事件.
答案A
2.在第3,6,16路公共汽车的一个停靠站,假定这个停靠站在同一时刻只能停靠一辆汽车,有一位乘客需乘3路或6路车到厂里.已知3路车、6路车在5分钟内到此停靠站的概率分别为0.2和0.6,则此乘客在5分钟内能乘到所需车的概率为( )
A.0.2 B.0.6 C.0.8 D.0.12
解析由已知乘3路车、6路车彼此互斥,故乘客在5分钟内乘到车的概率为0.2+0.6=0.8.
答案C
3.(2020全国高一课时练习)在平面直角坐标系中,从下列5个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取3个,这三点能构成三角形的概率是( )
A. B. C. D.1
解析从5个点中任取3个点,该试验的样本空间Ω={(A,B,C),(A,B,D),(A,B,E),(A,C,D),(A,C,E),(A,D,E),(B,C,D),(B,C,E),(B,D,E),(C,D,E)},共10个样本点,其中(A,C,E),(B,C,D)这两个样本点中的三点不能构成三角形,故三点能构成三角形的概率P=.
答案C
4.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为( )
A.0.42 B.0.28 C.0.18 D.0.12
解析∵甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,∴甲、乙两人都未达到优秀的概率为P=(1-0.6)(1-0.7)=0.12.故选D.
答案D
5.(2020黑龙江哈尔滨第六中学高二期末)现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率.先由计算器给出0到9之间取整数值的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数,根据以下数据估计该射击运动员射击4次至少击中3次的概率为( )
7527 0293 7140 9857 0347 4373 8636
6947 1417 4698 0371 6233 2616 8045
6011 3661 9597 7424 7610 4281
A.0.4 B.0.45 C.0.5 D.0.55
解析在20组数据中,至少击中3次的为7527,9857,8636,6947,4698,8045,9597,7424,共8次,故该射击运动员射击4次至少击中3次的概率为=0.4.
答案A
6.某城市一年的空气质量状况如下表所示:
污染指
数T
不大
于30
(30,60]
(60,
100]
(100,
110]
(110,
130]
(130,
140]
概率P
其中当污染指数T≤50时,空气质量为优;当50
a的概率是( )
A. B. C. D.
解析该试验的样本空间Ω={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)},共有15个样本点,b>a包含的样本点有(1,2),(1,3),(2,3),共3个,所以b>a的概率是.
答案D
8.甲袋装有m个白球,n个黑球,乙袋装有n个白球,m个黑球(m≠n),现从两袋中各摸一个球,A=“两球同色”,B=“两球异色”,则P(A)与P(B)的大小关系为( )
A.P(A)P(B) D.视m,n的大小而定
解析设A1=“取出的都是白球”,A2=“取出的都是黑球”,则A1,A2互斥且A=A1∪A2,
P(A)=P(A1)+P(A2)=.设B1=“甲袋取出白球乙袋取出黑球”,
B2=“甲袋取出黑球乙袋取出白球”,
则B1、B2互斥且B=B1∪B2,P(B)=P(B1)+P(B2)=.由于m≠n,故2mn0,
由前三年六月份各天的最高气温数据,得当温度大于等于20 ℃的天数为90-(2+16)=72,
∴估计Y大于零的概率P=.
20.(12分)随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某景点设有共享电动车租车点,共享电动车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为;一小时以上且不超过两小时还车的概率分别为;两人租车时间都不会超过三小时.
(1)求甲、乙两人所付租车费用相同的概率;
(2)求甲、乙两人所付的租车费用之和大于或等于8的概率.
解(1)甲、乙两人所付费用相同即同为2,4,6元,
都付2元的概率P1=,
都付4元的概率P2=,
都付6元的概率P3=,
∴所付费用相同的概率为P=P1+P2+P3=.
(2)设两人费用之和为8,10,12的事件分别为A,B,C,
P(A)=
P(B)=,
P(C)=,
设两人费用之和大于或等于8的事件为W,则W=A∪B∪C,
∴两人费用之和大于或等于8的概率P(W)=P(A)+P(B)+P(C)=.
21.(12分)(2020全国高一课时练习)(1)掷两枚质地均匀的骰子,计算点数和为7的概率;
(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;
(3)所得频率与概率相差大吗?为什么会有这种差异?
解(1)设第一枚骰子向上的点数记为x1,第二枚骰子向上的点数记为x2,则可用数组(x1,x2)表示样本点.该试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6);(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6);(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},共36种情况,其中点数和为7的有6种情况,
∴概率P=.
(2)试验120次后得到结果如下表格:
63
51
35
66
42
54
66
42
64
22
46
36
42
26
55
53
51
12
32
24
62
52
32
12
63
61
31
12
22
64
64
12
51
23
52
46
25
32
65
41
31
31
15
43
13
52
42
15
52
26
22
61
65
42
25
14
42
11
25
42
26
62
36
41
62
34
31
31
16
24
64
34
22
45
62
54
16
34
22
64
续 表
12
23
54
41
54
52
21
45
35
66
13
65
11
14
41
51
54
32
36
44
52
42
15
52
26
22
61
65
42
25
53
52
16
32
24
62
52
32
12
63
规定每个表格中的第一个数字代表第一枚骰子出现的数字,
第二个数字代表第二枚骰子出现的数字,从表格中可以查出点数和为7的有23个数据,∴点数和为7的频率为≈0.19.
(3)由(1)中点数和为7的概率为≈0.17,由(2)点数和为7的频率为≈0.19,
一般来说频率与概率有一定的差距,因为模拟的次数不多,不一定能反映真实情况.
22.(12分)某小组共有A,B,C,D,E五名同学,他们的身高(单位:m)以及体重指标(单位:kg/m2)如下表所示:
A
B
C
D
E
身高
1.69
1.73
1.75
1.79
1.82
体重指标
19.2
25.1
18.5
23.3
20.9
(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;
(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
解(1)设x1,x2分别表示从身高低于1.80的同学中任选的2人,则数组(x1,x2)表示样本点,该试验的样本空间Ω={(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)},共6个样本点.
由于每个人被选到的机会均等,因此这些样本点的出现是等可能的.设A=“选到的2人身高都在1.78以下”,则A={(A,B),(A,C),(B,C)},共3个样本点.因此选到的2人身高都在1.78以下的概率为P=.
(2)从该小组同学中任选2人,则该试验的样本空间Ω={(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)},共10个样本点.由于每个人被选到的机会均等,因此这些样本点的出现是等可能的.
设B=“选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)内”,则B={(C,D),(C,E),(D,E)},共3个样本点.
因此选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P1=.