- 140.00 KB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第57讲 直线与圆、圆与圆的位置关系
1.圆x2+y2=1与直线y=kx+2没有公共点的充要条件是(C)
A.k∈(-,)
B.k∈(-∞,-)∪(,+∞)
C.k∈(-,)
D.k∈(-∞,-)∪(,+∞)
因为直线方程的一般式为kx-y+2=0,
由d=>1,得k∈(-,).
2.在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为(B)
A. 5 B.10
C. 15 D.20
最长弦为圆的直径2,最短弦为垂直于过(0,1)点和圆心的直径的弦,圆心(1,3)与点(0,1)的距离为=,所以最短弦长为2=2.
所以四边形ABCD的面积为×2××2=10.
3.(2015·重庆卷)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=(C)
A.2 B.4
C.6 D.2
由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,所以圆心C(2,1)在直线x+ay-1=0上,
所以2+a-1=0,所以a=-1,所以A(-4,-1).
所以|AC|2=36+4=40.又r=2,
所以|AB|2=40-4=36,所以|AB|=6.
4.(2016·山东卷)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是(B)
A.内切 B.相交
C.外切 D.相离
(方法一)由得两交点为
(0,0),(-a,a).
因为圆M截直线所得线段的长度为2,
所以=2.又a>0,所以a=2.
所以圆M的方程为x2+y2-4y=0,即x2+(y-2)2=4,圆心M(0,2),半径r1=2.
又圆N:(x-1)2+(y-1)2=1,圆心N(1,1),半径r2=1,
所以|MN|==.
因为r1-r2=1,r1+r2=3,1<|MN|<3,所以两圆相交.
(方法二)因为x2+y2-2ay=0(a>0)⇔x2+(y-a)2=a2(a>0),
所以M(0,a),r1=a.依题意,有=,解得a=2.
以下同方法一.
5.将圆x2+y2=1沿x轴正向平移1个单位后得到圆C,则圆C的方程是 (x-1)2+y2=1 ,若过点(3,0)的直线l和圆C相切,则直线l的斜率为 ± .
将圆x2+y2=1沿x轴正向平移1个单位,将方程中x换为x-1,得到圆C的方程为(x-1)2+y2=1,设直线l的方程为y=k(x-3),
由d==1得k=±.
6.(2016·新课标卷Ⅲ)已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|= 4 .
如图所示,
因为直线AB的方程为x-y+6=0,
所以kAB=,所以∠BPD=30°,从而∠BDP=60°.
在Rt△BOD中,因为|OB|=2,所以|OD|=2.
取AB的中点H,连接OH,则OH⊥AB,
所以OH为直角梯形ABDC的中位线,
所以|OC|=|OD|,所以|CD|=2|OD|=2×2=4.
7.(2017·新课标卷Ⅲ)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由.
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
(1)不能出现AC⊥BC的情况.理由如下:
设A(x1,0),B(x2,0),则x1,x2满足x2+mx-2=0,
所以x1x2=-2.又点C的坐标为(0,1),
故AC的斜率与BC的斜率之积为·=-,
所以不能出现AC⊥BC的情况.
(2)证明:BC的中点坐标为(,),可得BC的中垂线方程为y-=x2(x-).
由(1)可得x1+x2=-m,
所以AB的中垂线方程为x=-.
联立
又x+mx2-2=0,可得
所以过A,B,C三点的圆的圆心坐标为(-,-),半径r=.
故圆在y轴上截得的弦长为2 =3,
即过A,B,C三点的圆在y轴上截得的弦长为定值.
8.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M、N两点,若|MN|≥2,则k的取值范围是(B)
A.[-,0] B.[-,]
C.[-,] D.[-,0]
因为圆心(2,3)到直线y=kx+3的距离d=,
所以|MN|=2=2≥2,
解得3k2≤1,即k∈[-,].
9.若两圆C1:x2+y2=1,C2:(x+4)2+(y-a)2=25相切,则实数a= ±2或0 .
当两圆外切时,C1C2==5+1,
所以a=±2;
当两圆内切时,C1C2==5-1,所以a=0.
所以a=±2或0.
10.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.
(1)由题意知,圆心C是直线y=2x-4和y=x-1的交点,解得C(3,2),
于是切线的斜率必存在.
设过A(0,3)的圆C的切线的方程为y=kx+3.
由题意,得=1,解得k=0或k=-.
故所求切线的方程为y=3或3x+4y-12=0.
(2)因为圆心在直线y=2x-4上,则C(a,2(a-2)),
所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.
设点M(x,y),因为|MA|=2|MO|,
所以=2.
化简得x2+y2+2y-3=0,即x2+(y+1)2=4.
所以点M在以D(0,-1)为圆心,半径为2的圆上.
由题意知,点M(x,y)在圆C上,
所以圆C与圆D有公共点,
则|2-1|≤|CD|≤|2+1|,即1≤≤3,
解得0≤a≤.
所以圆心C的横坐标a的取值范围为[0,].
相关文档
- 2019年高考数学总复习检测第63讲 2021-06-173页
- 2019年高考数学总复习检测第48讲 2021-06-175页
- 2019年高考数学总复习检测第2讲 2021-06-173页
- 2019年高考数学总复习检测第54讲 2021-06-163页
- 2019年高考数学总复习检测第64讲 2021-06-163页
- 2019年高考数学总复习检测第43讲 2021-06-164页
- 2019年高考数学总复习检测第31讲 2021-06-163页
- 2019年高考数学总复习检测第47讲 2021-06-163页
- 2019年高考数学总复习检测第55讲 2021-06-153页
- 2019年高考数学总复习检测第9讲 2021-06-153页