- 390.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第43讲 简单的线性规划问题
1.(2016·北京卷)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x-y的最大值为(C)
A.-1 B.3
C.7 D.8
作出线段AB,如图所示.
作直线2x-y=0并将其向下平移至直线过点B(4,1)时,2x-y取最大值,为2×4-1=7.
2.(2017·新课标卷Ⅱ)设x,y满足约束条件则z=2x+y 的最小值是(A)
A.-15 B.-9
C.1 D.9
不等式组表示的平面区域如图中阴影部分所示.
将目标函数z=2x+y化为y=-2x+z,作出直线y=-2x并平移,当直线y=-2x+z经过点A(-6,-3)时,z取最小值,且zmin=2×(-6)-3=-15.
3.已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a=(B)
A. B.
C.1 D.2
作出不等式组表示的可行域,如图(阴影部分所示).
易知直线z=2x+y过交点A时,z取最小值,
由得
所以zmin=2-2a=1,解得a=.
4.某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为(B)
A.甲车间加工原料10箱,乙车间加工原料60箱
B.甲车间加工原料15箱,乙车间加工原料55箱
C.甲车间加工原料18箱,乙车间加工原料50箱
D.甲车间加工原料40箱,乙车间加工原料30箱
设甲车间加工x箱原料,乙车间加工y箱原料,甲、乙两车间每天总获利为z元.
依题意,得z=7×40x+4×50y=280x+200y,画出可行域如图阴影部分,
联立解得
知z在A点处取得最大值,故选B.
5.(2015·新课标卷Ⅱ)若x,y满足约束条件则z=2x+y的最大值为 8 .
画出可行域(如图所示),通过平移直线y=-2x分析最优解.
因为z=2x+y,所以y=-2x+z,
将直线y=-2x向上平移,经过点B时z取得最大值.
由解得
所以zmax=2×3+2=8.
6.若实数x,y满足则
(1)的取值范围为 [2,+∞) ;
(2)x2+y2的取值范围为 (1,5] .
作出可行域,其可行域是顶点分别为A(0,1),B(1,2),C(0,2)的三角形及其内部(但不包括AC边).
(1)因为表示可行域内的点(x,y)与(0,0)连线的斜率,可知其取值范围为[2,+∞).
(2)因为x2+y2表示可行域内的点(x,y)到(0,0)的距离的平方,可知其取值范围为(1,5].
7.给定区域D:令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},问T中的点共确定多少条不同的直线?
画出不等式组所表示的平面区域(如下图所示).
令z=0,得直线l:x+y=0,平移直线l,由图象可知当直线经过整点A(0,1)时,z取最小值,当直线经过整点B(0,4),C(1,3),D(2,2),E(3,1),F(4,0)时,z取最大值.
所以T={(0,1),(0,4),(1,3),(2,2),(3,1),(4,0)},
所以T中的点可确定的直线有AB,AC,AD,AE,AF,BF共6条不同的直线.
8.(2016·浙江卷)若平面区域夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是(B)
A. B.
C. D.
根据约束条件作出可行域如图阴影部分,
当斜率为1的直线分别过A点和B点时满足条件,
联立方程组求得A(1,2),
联立方程组求得B(2,1),
可求得分别过A,B点且斜率为1的两条直线方程为x-y+1=0和x-y-1=0,
由两平行线间的距离公式得距离为=,故选B.
9.已知x,y满足约束条件当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为 4 .
不等式组表示的平面区域如图中阴影部分所示.
由于a>0,b>0,所以目标函数z=ax+by在点(2,1)处取得最小值,即2a+b=2.
(方法一)a2+b2=a2+(2-2a)2=5a2-8a+20
=(a-4)2+4≥4.
即a2+b2的最小值为4.
(方法二)表示坐标原点与直线2a+b=2上的点之间的距离,故的最小值为
=2.
即a2+b2的最小值为4.
10.(2017·天津卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:,连续剧播放时长(分钟),广告播放时长(分钟),收视人次(万)甲,70,5,60乙,60,5,25已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.
(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?
(1)由已知,x,y满足的数学关系式为
即
该二元一次不等式组所表示的平面区域为图①中的阴影部分中的整数点.
①
②
(2)设总收视人次为z万,则目标函数为z=60x+25y.
考虑z=60x+25y,将它变形为y=-x+,这是斜率为-,随z变化的一组平行直线.为直线在y轴上的截距,当取得最大值时,z的值就最大.
又因为x,y满足约束条件,所以由图②可知,当直线z=60x+25y经过可行域上的点M时,截距最大,即z最大.
解方程组得则点M的坐标为(6,3).
所以,电视台每周播出甲连续剧6次、乙连续剧3次时,才能使总收视人次最多.
相关文档
- 2019年高考数学总复习检测第31讲 2021-06-163页
- 2019年高考数学总复习检测第47讲 2021-06-163页
- 2019年高考数学总复习检测第55讲 2021-06-153页
- 2019年高考数学总复习检测第9讲 2021-06-153页
- 2019年高考数学总复习检测第17讲 2021-06-153页
- 2019年高考数学总复习检测第27讲 2021-06-155页
- 2019年高考数学总复习检测第35讲 2021-06-153页
- 2019年高考数学总复习检测第60讲 2021-06-154页
- 2019年高考数学总复习检测第44讲 2021-06-113页
- 2019年高考数学总复习检测第30讲 2021-06-113页