- 113.00 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
[基础题组练]
1.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )
A.方程x3+ax+b=0没有实根
B.方程x3+ax+b=0至多有一个实根
C.方程x3+ax+b=0至多有两个实根
D.方程x3+ax+b=0恰好有两个实根
解析:选A.依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.
2.分析法又称执果索因法,若用分析法证明“设a>b>c,且a+b+c=0,求证:0 B.a-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
解析:选C.0
⇔(a-c)(2a+c)>0⇔(a-c)(a-b)>0.故选C.
3.(2020·江西抚州模拟)设a,b∈R,现给出下列五个条件:①a+b=2;②a+b>2;③a+b>-2;④ab>1;⑤logab<0(a>0,且a≠1).其中能推出“a,b中至少有一个大于1”的条件为( )
A.②③④ B.②③④⑤
C.①②③⑤ D.②⑤
解析:选D.a=b=1时,a+b=2,所以推不出a,b中至少有一个大于1,①不符合;当a=b=0时,a+b>-2,推不出a,b中至少有一个大于1,③不符合;当a=b=-2时,ab>1,推不出a,b中至少有一个大于1,④不符合;对于②,假设a,b都不大于1,即a≤1,b≤1,则a+b≤2,与a+b>2矛盾,所以②能推出a,b中至少有一个大于1;对于⑤,假设a,b都不大于1,则logab≥loga1=0,与logab<0矛盾,故⑤能推出a,b中至少有一个大于1.综上,选D.
4.已知函数f(x)=,a,b是正实数,A=f,B=f(),C=f,则A,B,C的大小关系为( )
A.A≤B≤C B.A≤C≤B
C.B≤C≤A D.C≤B≤A
解析:选A.因为≥≥,又f(x)=在R上是减函数,所以f≤f()≤f,即A≤B≤C.
5.设f(x)是定义在R上的奇函数,且当x≥0时,函数f(x)是减函数,若x1+x2>0,则f(x1)+f(x2)的值( )
A.恒为负值 B.恒等于零
C.恒为正值 D.无法确定
解析:选A.由f(x)是定义在R上的奇函数,且当x≥0时,函数f(x)递减,可知f(x)是R上的减函数,
由x1+x2>0,可知x1>-x2,f(x1)b>0,则①<;②ac2>bc2;③a2>b2;④>,其中正确的序号是________.
解析:对于①,因为a>b>0,所以ab>0,>0,a·>b·,即>.故①正确;
当c=0时,②不正确;由不等式的性质知③④正确.
答案:①③④
7.已知点An(n,an)为函数y=图象上的点,Bn(n,bn)为函数y=x图象上的点,其中n∈N+,设cn=an-bn,则cn与cn+1的大小关系为________.
解析:由条件得cn=an-bn=-n=,
所以cn随n的增大而减小,所以cn+10,求证:2a3-b3≥2ab2-a2b.
证明:2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)
=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).
因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,
从而(a-b)(a+b)(2a+b)≥0,
即2a3-b3≥2ab2-a2b.
10.已知非零向量a,b,且a⊥b,求证:≤.
证明:a⊥b⇔a·b=0,
要证≤.
只需证|a|+|b|≤|a+b|,
只需证|a|2+2|a||b|+|b|2≤2(a2+2a·b+b2),
只需证|a|2+2|a||b|+|b|2≤2a2+2b2,
只需证|a|2+|b|2-2|a||b|≥0,
即证(|a|-|b|)2≥0,
上式显然成立,故原不等式得证.
[综合题组练]
1.已知a,b,c∈R,若·>1且+≥-2,则下列结论成立的是( )
A.a,b,c同号
B.b,c同号,a与它们异号
C.a,c同号,b与它们异号
D.b,c同号,a与b,c的符号关系不确定
解析:选A.由·>1知与同号,
若>0且>0,不等式+≥-2显然成立,
若<0且<0,则->0,->0,
+≥2 >2,即+<-2,
这与+≥-2矛盾,故>0且>0,即a,b,c同号.
2.在等比数列{an}中,“a10,则1
1, 此时,显然数列{an}是递增数列, 若a1<0,则1>q>q2,即02时,关于x,y,z的方程xn+yn=zn没有正整数解.”经历三百多年,于二十世纪九十年代中期,英国数学家安德鲁·怀尔斯证明了费马猜想,使它终成费马大定理.则下面说法正确的是( ) A.至少存在一组正整数组(x,y,z),使方程x3+y3=z3有解 B.关于x,y的方程x3+y3=1有正有理数解 C.关于x,y的方程x3+y3=1没有正有理数解 D.当整数n>3时,关于x,y,z的方程xn+yn=zn没有正实数解 解析:选C.由于B,C两个命题是对立的,故正确选项是这两个选项中的一个.假设关于x,y的方程x3+y3=1有正有理数解,则x,y可写成整数比值的形式,不妨设x=,y=,其中m,n为互质的正整数,a,b为互质的正整数,代入方程得+=1,两边同时乘以a3n3,得(am)3+(bn)3=(an)3.由于am,bn,an都是正整数,这与费马大定理矛盾,所以假设不成立,所以关于x,y的方程x3+y3=1没有正有理数解.故选C. 4.(一题多解)若二次函数f(x)=4x2-2(p-2)x-2p2-p+1,在区间[-1,1]内至少存在一点c,使f(c)>0,则实数p的取值范围是________. 解析:法一(补集法): 令解得p≤-3或p≥, 故满足条件的p的取值范围为. 法二(直接法): 依题意有f(-1)>0或f(1)>0, 即2p2-p-1<0或2p2+3p-9<0, 得-<p<1或-3<p<, 故满足条件的p的取值范围是. 答案: 5.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且00. (1)证明:是f(x)=0的一个根; (2)试比较与c的大小; (3)证明:-20, 由0 0, 知f>0与f=0矛盾, 所以≥c,又因为≠c,所以>c. (3)证明:由f(c)=0,得ac+b+1=0, 所以b=-1-ac. 又a>0,c>0,所以b<-1. 二次函数f(x)的图象的对称轴方程为 x=-=<=x2=, 即-<. 又a>0,所以b>-2, 所以-2-2)使函数h(x)=在区间[a,b](a>-2)上是“四维光军”函数, 因为h(x)=在区间(-2,+∞)上是减少的, 所以有即 解得a=b,这与已知a
相关文档
- 2021届北师大版高考理科数一轮复习2021-06-248页
- 2021届浙江新高考数学一轮复习高效2021-06-247页
- 2021届浙江新高考数学一轮复习高效2021-06-247页
- 2021届北师大版高考理科数一轮复习2021-06-249页
- 2021届浙江新高考数学一轮复习高效2021-06-245页
- 2021届北师大版高考理科数一轮复习2021-06-247页
- 2021届北师大版高考理科数一轮复习2021-06-248页
- 2021届浙江新高考数学一轮复习高效2021-06-247页
- 2021届北师大版高考理科数一轮复习2021-06-245页
- 2021届北师大版高考理科数一轮复习2021-06-247页