• 696.24 KB
  • 2021-11-01 发布

八年级上数学课件《勾股定理的逆定理》 (7)_苏科版

  • 28页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
1.直角三角形有哪些性质? 2.如何判断三角形是直角三角形? 回忆 古埃及人曾用下面的方法得到直角 按照这种做法真能得到一个 直角三角形吗? •古埃及人曾用下面的方法得到直角: 用13个等距的结,把一根绳子 分成等长的12段,然后以3个结, 4个结,5个结的长度为边长, 用木桩钉成一个三角形,其中 一个角便是直角。 3 4 5 请同学们观察,这个三角形的三条边有什么关系吗? 3 2 4 2 5 2+ = 动手画一画 下面的三组数分别是一个三角 形的三边长a,b,c: 2.5,6,6.5; 6,8,10。 (1)这三组数都满足 222 cba  吗? (2)画出图形,它们都是直角三角形吗? 由上面几个例子你发现了什么吗?请以命题的 形式说出你的观点! 命题2 如果三角形的三边长a、b、c满足 那么这个三角形是直角三角形。 a2 + b2 = c2 勾股定理的逆命题 如果直角三角形两直角边分别为a,b, 斜边为c,那么有a2 + b2 = c2 勾股定理 如果三角形的三边长a、b、c满足 那么这个三角形是直角三角形。 a2 + b2 = c2 互逆命题 3 4 5 A C B A′ B′C′ 3 4 古埃及人的做法: △ABC中, BC=3、 AC=4、AB=5 这两个三角形有什么关系? 我们作RT △ABC,使 =3、 =4B′C′ A′C′ 3 4 5 A C B A′ B′C′ 3 4 在 中根据 勾股定理有 CBART  222 CBCABA  5 543 4,3 2222    BA BA CACB ABC ≌ CBA   90CC ∵ ∠ C’=900 ∴ A’B’2= a2+b2 ∵ a2+b2=c2 ∴ A’B’ 2=c2 ∴ A’B’ =c ∵ 边长取正值 ∴ △ ABC ≌ △ A’B’C’ (SSS)∴ ∠ C= ∠ C’=90° BC=a=B’C’ CA=b=C’A’ AB=c=A’B’ 已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2 求证:△ ABC是直角三角形 证明:画一个△A’B’C’,使∠ C’=90°,B’C’=a, C’A’=b 在△ ABC和△ A’B’C’ 中 则 △ ABC是直角三角形 (直角三角形的定义) 勾股定理的逆命题 A C B A′ B′C′ a b 证明: a b c 勾股定理的逆命题 如果直角三角形两直角边分别为a,b, 斜边为c,那么 a2 + b2 = c2 勾股定理 如果三角形的三边长a、b、c满足 那么这个三角形是直角三角形。且边 C所对的角为直角。 a2 + b2 = c2 互逆命题 定理 定理 例1 判断由a、b、c组成的三角形是不是直角三角形: (1) a=15 , b =8 , c=17 例题解析 (2) a=13 , b =15 , c=14 分析:由勾股定理的逆定理,判断三角形是 不是直角三角形,只要看两条较小边的平方 和是否等于最大边的平方。 解:∵152+82=225+64=289 172=289 ∴ 152+82=172 ∴这个三角形是直角三角形 例 2.在△ABC中,a=15, b=17, c=8,求 此三角形的面积。 222 222 17815 bca  解 ∴△ABC为直角三角形,且∠B=90° ∴ △ABC的面积为 .60815 2 1 2 1  ca 8 15 17 AB C 下面以a,b,c为边长的三角形是不是直角 三角形?如果是那么哪一个角是直角? (1) a=25 b=20 c=15 ____ _____ ; (2) a=13 b=14 c=15 ____ _____ ; (4) a:b: c=3:4:5 _____ _____ ; 是 是 不是 是 ∠ A=900 ∠ B=900 ∠ C=900 (3) a=1 b=2 c= ____ _____ ;3 像25,20,15,能够成为直角三角形 三条边长的三个正整数,称为勾股数. 13 A B C D A B C D 3 4 5 12 例 3 一个零件的形状如左图所示,按规定这个零 件中∠A和∠DBC都应为直角。工人师傅量得这 个零件各边尺寸如右图所示,这个 零件符合要求 吗? 例题解析 • 例4: “远航”号、“海天”号轮船 同时离开港口,各自沿一固定方向航 行,“远航”号每小时航行16海里, “海天”号每小时航行12海里。它们 离开港口一个半小时后相距30海里。 如果知道“远航”号沿东北方向航行, 能知道“海天”号沿哪个方向航行吗? P E Q R N 远航海天 B ) (,2)( 22 则此三角形是 满足条件、、三角形三边长 abcba cba  A、锐角三角形 B、直角三角形 C、钝角三角形 D、等边三角形 1. 练一练 已知:如图,四边形ABCD 中,∠B=900,AB=3,BC=4, C D= 1 2, A D= 1 3 ,求四边形 ABCD的面积? A B C D S四边形ABCD=36 中考链接 吗?说明理由△ABC是直角三角形 n是正整数),m,n,>(m 且 cb,a, 分别为△ABC三角形的三边 1、已知 nm=c2mn,=b,n-m =a 2222  分析:先来判断a,b,c三边哪条最长,可 以代m,n为满足条件的特殊值来试, m=5,n=4.则a=9,b=40,c=41,c最大。 2222222222 )()2()( cnmmnnmba  解: ∴△ABC是直角三角形 练一练 1、请你写出三组勾股数; 2、一组勾股数的倍数一定是勾股数吗? 为什么? 挑战自我 1、 已知a,b,c为△ABC的三边,且 满足 a2+b2+c2+338=10a+24b+26c. 试判断△ABC的形状. 思维训练 2、△ABC三边a,b,c为边向外作 正方形,正三角形,以三边为 直径作半圆,若S1+S2=S3成立, 则 是直角三角形吗? A C ab c S1S2 S3 BA B C ab c S1 S2 S3 思维训练 …… 自主评价: 1、勾股定理的逆定理 2、什么叫做互逆命题、原命题与逆命题 3、什么称为互为逆定理。 作业:84页, 习题18.2第1题、第4题 勾股定理的逆命题 如果三角形的较长边的平方等于其它两条较短边 的平方和,那么这个三角形是直角三角形。 c a b B C A 已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2 求证: △ ABC是直角三角形 证明:画一个△A’B’C’,使∠ C’=900,B’C’=a, C’A’=b a b A’ B’ C’