• 272.50 KB
  • 2021-11-10 发布

九年级下册数学教案28-2-2 第2课时 利用仰俯角解直角三角形 人教版

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎28.2.2 应用举例 第2课时 利用仰俯角解直角三角形 ‎                  ‎ ‎1.使学生掌握仰角、俯角的意义,并学会正确地判断;(重点)‎ ‎2.初步掌握将实际问题转化为解直角三角形问题的能力.(难点)‎ 一、情境导入 在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问题.‎ 二、合作探究 探究点:利用仰(俯)角解决实际问题 ‎【类型一】 利用仰角求高度 ‎ 星期天,身高均为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一座塔的高度.如图,小红站在A处测得她看塔顶C的仰角α为45°,小涛站在B处测得塔顶C的仰角β为30°,他们又测出A、B两点的距离为41.5m,假设他们的眼睛离头顶都是10cm,求塔高(结果保留根号).‎ 解析:设塔高为xm,利用锐角三角函数关系得出PM的长,再利用=tan30°,求出x的值即可.‎ 解:设塔底面中心为O,塔高xm,MN∥AB与塔中轴线相交于点P,得到△CPM、△CPN是直角三角形,则=tan45°,∵tan45°=1,∴PM=CP=x-1.5.在Rt△CPN中 ‎,=tan30°,即=,解得x=.‎ 答:塔高为m.‎ 方法总结:解决此类问题要了解角与角之间的关系,找到与已知和未知相关联的直角三角形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.‎ 变式训练:见《学练优》本课时练习“课堂达标训练” 第7题 ‎【类型二】 利用俯角求高度 ‎ 如图,在两建筑物之间有一旗杆EG,高15米,从A点经过旗杆顶部E点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°.若旗杆底部G点为BC的中点,求矮建筑物的高CD.‎ 解析:根据点G是BC的中点,可判断EG是△ABC的中位线,求出AB.在Rt△ABC和Rt△AFD中,利用特殊角的三角函数值分别求出BC、DF,继而可求出CD的长度.‎ 解:过点D作DF⊥AF于点F,∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线,∴AB=2EG=30m.在Rt△ABC中,∵∠CAB=30°,∴BC=ABtan∠BAC=30×=10m.在Rt△AFD中,∵AF=BC=10m,∴FD=AF·tanβ=10×=10m,∴CD=AB-FD=30-10=20m.‎ 答:矮建筑物的高为20m.‎ 方法总结:本题考查了利用俯角求高度,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.‎ 变式训练:见《学练优》本课时练习“课堂达标训练”第6题 ‎【类型三】 利用俯角求不可到达的两点之间的距离 ‎ 如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约是多少m(精确到0.1m,参考数据:≈1.41,≈1.73)?‎ 解析:在Rt△ACD中,根据已知条件求出AC的值,再在Rt△BCD中,根据∠EDB=45°,求出BC=CD=21m,最后根据AB=AC-BC,代值计算即可.[来源:学科网][来源:学科网]‎ 解:∵在Rt△ACD中,CD=21m,∠DAC=30°,∴AC===21m.∵在Rt△BCD中,∠EDB=45°,∴∠DBC=45°,∴BC=CD=21m,∴AB=AC-BC=21-21≈15.3(m).则河的宽度AB约是15.3m.‎ 方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,把实际问题化归为直角三角形中边角关系问题加以解决.[来源:Z*xx*k.Com]‎ 变式训练:见《学练优》本课时练习“课后巩固提升” 第3题 ‎【类型四】 仰角和俯角的综合 ‎ 某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB的高,他们来到与建筑物AB在同一平地且相距12m的建筑物CD上的C处观察,测得此建筑物顶部A的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1m,可供选用的数据:≈1.4,≈1.7).[来源:学&科&网Z&X&X&K]‎ ‎[来源:学科网ZXXK]‎ 解析:过点C作AB的垂线CE,垂足为E,根据题意可得出四边形CDBE是正方形,再由BD=12m可知BE=CE=12m,由AE=CE·tan30°得出AE的长,进而可得出结论.‎ 解:过点C作AB的垂线,垂足为E,∵CD⊥BD,AB⊥BD,∠ECB=45°,∴四边形CDBE是正方形.∵BD=12m,∴BE=CE=12m,∴AE=CE·tan30°=12×=4(m),∴AB=4+12≈19(m).‎ 答:建筑物AB的高为19m.‎ 方法总结:本题考查的是解直角三角形的应用中仰角、俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.‎ 变式训练:见《学练优》本课时练习“课后巩固提升”第7题 三、板书设计 ‎1.仰角和俯角的概念;‎ ‎2.利用仰角和俯角求高度;‎ ‎3.利用仰角和俯角求不可到达两点之间的距离;‎ ‎4.仰角和俯角的综合.‎ ‎ 备课时尽可能站在学生的角度上思考问题,设计好教学过程中的每一个细节.上课前多揣摩,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角.使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步.只有这样 ‎,才能真正提高课堂教学效率.‎