• 236.50 KB
  • 2021-11-11 发布

中考数学专题复习练习:三角形辅助线

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
三角形中作辅助线的常用方法举例 一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:‎ 例1:已知如图1-1:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.‎ 证明:(法一)将DE两边延长分别交AB、AC 于M、N,‎ 在△AMN中,AM+AN > MD+DE+NE;(1)‎ ‎ 在△BDM中,MB+MD>BD; (2)‎ ‎ 在△CEN中,CN+NE>CE; (3)‎ ‎ 由(1)+(2)+(3)得:‎ ‎ AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ‎ ∴AB+AC>BD+DE+EC ‎ ‎ ‎ ‎(法二:)如图1-2, 延长BD交 AC于F,延长CE交BF于G,‎ 在△ABF和△GFC和△GDE中有: ‎ ‎ AB+AF> BD+DG+GF (三角形两边之和大于第三边)(1)‎ ‎ GF+FC>GE+CE(同上)………………………………(2)‎ ‎ DG+GE>DE(同上)……………………………………(3)‎ ‎ 由(1)+(2)+(3)得:‎ ‎ AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ‎ ∴AB+AC>BD+DE+EC。‎ 二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:‎ 例如:如图2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC。‎ 分析:因为∠BDC与∠BAC不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC处于在外角的位置,∠BAC处于在内角的位置;‎ 证法一:延长BD交AC于点E,这时∠BDC是△EDC的外角,‎ ‎ ∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接AD,并延长交BC于F ‎∵∠BDF是△ABD的外角 ‎∴∠BDF>∠BAD,同理,∠CDF>∠CAD ‎∴∠BDF+∠CDF>∠BAD+∠CAD 即:∠BDC>∠BAC。‎ 注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明。‎ 三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:‎ 例如:如图3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。‎ 分析:要证BE+CF>EF ,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同一个三角形中。‎ 证明:在DA上截取DN=DB,连接NE,NF,则DN=DC,‎ 在△DBE和△DNE中:‎ ‎∵‎ ‎∴△DBE≌△DNE (SAS)‎ ‎∴BE=NE(全等三角形对应边相等)‎ 同理可得:CF=NF 在△EFN中EN+FN>EF(三角形两边之和大于第三边)‎ ‎∴BE+CF>EF。‎ 注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等。‎ 四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。‎ 例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF 证明:延长ED至M,使DM=DE,连接 ‎ CM,MF。在△BDE和△CDM中,‎ ‎∵‎ ‎ ∴△BDE≌△CDM (SAS)‎ ‎ 又∵∠1=∠2,∠3=∠4 (已知) ‎ ‎ ∠1+∠2+∠3+∠4=180°(平角的定义)‎ ‎ ∴∠3+∠2=90°‎ 即:∠EDF=90°‎ ‎ ∴∠FDM=∠EDF =90°‎ 在△EDF和△MDF中 ‎ ∵‎ ‎ ∴△EDF≌△MDF (SAS)‎ ‎ ∴EF=MF (全等三角形对应边相等)‎ ‎ ∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边)‎ ‎ ∴BE+CF>EF 注:上题也可加倍FD,证法同上。‎ 注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中。‎ 五、有三角形中线时,常延长加倍中线,构造全等三角形。‎ 例如:如图5-1:AD为 △ABC的中线,求证:AB+AC>2AD。‎ 分析:要证AB+AC>2AD,由图想到: AB+BD>AD,AC+CD>AD,所以有AB+AC+ BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去。 ‎ 证明:延长AD至E,使DE=AD,连接BE,则AE=2AD ‎ ∵AD为△ABC的中线 (已知)‎ ‎ ∴BD=CD (中线定义)‎ ‎ 在△ACD和△EBD中 ‎ ‎ ‎ ∴△ACD≌△EBD (SAS)‎ ‎ ∴BE=CA(全等三角形对应边相等)‎ ‎ ∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)‎ ‎ ∴AB+AC>2AD。‎ ‎(常延长中线加倍,构造全等三角形)‎ 练习:已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF=2AD。 ‎ 六、截长补短法作辅助线。‎ 例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点。‎ 求证:AB-AC>PB-PC。‎ 分析:要证:AB-AC>PB-PC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN, 再连接PN,则PC=PN,又在△PNB中,PB-PN<BN,‎ 即:AB-AC>PB-PC。‎ 证明:(截长法)‎ 在AB上截取AN=AC连接PN , 在△APN和△APC中 ‎∵‎ ‎ ∴△APN≌△APC (SAS)‎ ‎ ∴PC=PN (全等三角形对应边相等)‎ ‎ ∵在△BPN中,有 PB-PN<BN (三角形两边之差小于第三边)‎ ‎ ∴BP-PC<AB-AC 证明:(补短法) 延长AC至M,使AM=AB,连接PM,‎ ‎ 在△ABP和△AMP中 ‎ ∵ ‎ ‎ ∴△ABP≌△AMP (SAS)‎ ‎ ∴PB=PM (全等三角形对应边相等)‎ ‎ 又∵在△PCM中有:CM>PM-PC(三角形两边之差小于第三边)‎ ‎ ∴AB-AC>PB-PC。‎ 七、延长已知边构造三角形:‎ 例如:如图7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,‎ 求证:AD=BC 分析:欲证 AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。‎ 证明:分别延长DA,CB,它们的延长交于E点,‎ ‎ ∵AD⊥AC BC⊥BD (已知)‎ ‎ ∴∠CAE=∠DBE =90° (垂直的定义)‎ ‎ 在△DBE与△CAE中 ‎ ∵‎ ‎ ∴△DBE≌△CAE (AAS)‎ ‎ ∴ED=EC EB=EA (全等三角形对应边相等)‎ ‎ ∴ED-EA=EC-EB ‎ ‎ 即:AD=BC。‎ ‎(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。)‎ 八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。‎ 例如:如图8-1:AB∥CD,AD∥BC 求证:AB=CD。‎ 分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。‎ 证明:连接AC(或BD)‎ ‎ ∵AB∥CD AD∥BC (已知)‎ ‎ ∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等)‎ 在△ABC与△CDA中 ‎ ∵ ‎ ‎ ∴△ABC≌△CDA (ASA)‎ ‎ ∴AB=CD(全等三角形对应边相等)‎ 九、有和角平分线垂直的线段时,通常把这条线段延长。‎ 例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E 。求证:BD=2CE ‎ 分析:要证BD=2CE,想到要构造线段2CE,同时CE与∠ABC的平分线垂直,想到 要将其延长。 ‎ 证明:分别延长BA,CE交于点F。‎ ‎ ∵BE⊥CF (已知)‎ ‎ ∴∠BEF=∠BEC=90° (垂直的定义)‎ 在△BEF与△BEC中,‎ ‎ ∵ ‎ ‎ ∴△BEF≌△BEC (ASA)‎ ‎ ∴CE=FE=CF (全等三角形对应边相等)‎ ‎ ∵∠BAC=90° BE⊥CF (已知)‎ ‎ ∴∠BAC=∠CAF=90° ∠1+∠BDA=90°∠1+∠BFC=90°‎ ‎ ∴∠BDA=∠BFC 在△ABD与△ACF中 ‎ ‎ ‎ ∴△ABD≌△ACF (AAS)‎ ‎ ∴BD=CF (全等三角形对应边相等)‎ ‎ ∴BD=2CE 十、连接已知点,构造全等三角形。‎ 例如:已知:如图10-1;AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。‎ 分析:要证∠A=∠D,可证它们所在的三角形△ABO和△DCO全等,而只有AB=DC和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB=DC,AC=BD,若连接BC,则△ABC和△DCB全等,所以,证得∠A=∠D。‎ 证明:连接BC,在△ABC和△DCB中 ‎ ∵ ‎ ‎ ∴△ABC≌△DCB (SSS)‎ ‎ ∴∠A=∠D (全等三角形对应边相等)‎ 十一、取线段中点构造全等三有形。‎ 例如:如图11-1:AB=DC,∠A=∠D 求证:∠ABC=∠DCB。‎ 分析:由AB=DC,∠A=∠D,想到如取AD的中点N,连接NB,NC,再由SAS公理有△ABN≌△DCN,故BN=CN,∠ABN=∠DCN。下面只需证∠NBC=∠NCB,再取BC的中点M,连接MN,则由SSS公理有△NBM≌△NCM,所以∠NBC=∠NCB。问题得证。‎ 证明:取AD,BC的中点N、M,连接NB,NM,NC。则AN=DN,BM=CM,在△ABN和△DCN中 ‎ ∵ ‎ ‎ ∴△ABN≌△DCN (SAS)‎ ‎ ∴∠ABN=∠DCN NB=NC (全等三角形对应边、角相等)‎ 在△NBM与△NCM中 ‎ ∵‎ ‎∴△NMB≌△NCM,(SSS) ‎ ‎∴∠NBC=∠NCB (全等三角形对应角相等)‎ ‎∴∠NBC+∠ABN =∠NCB+∠DCN 即∠ABC=∠DCB。‎