- 44.50 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(十) 概率的基本性质
A级——基本能力达标
1.从一批产品(既有正品也有次品)中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论中错误的是( )
A.A与C互斥 B.B与C互斥
C.任何两个都互斥 D.任何两个都不互斥
解析:选D 由题意知事件A、B、C两两不可能同时发生,因此两两互斥.
2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为( )
A.至多有2件次品 B.至多有1件次品
C.至多有2件正品 D.至少有2件正品
解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.
3.已知盒中有5个红球,3个白球,从盒中任取2个球,下列说法中正确的是( )
A.全是白球与全是红球是对立事件
B.没有白球与至少有一个白球是对立事件
C.只有一个白球与只有一个红球是互斥关系
D.全是红球与有一个红球是包含关系
解析:选B 从盒中任取2球,出现球的颜色情况是,全是红球,有一个红球且有一个白球,全是白球,至少有一个的对立面是没有一个,所以选B.
4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )
A.至少有一个红球与都是红球
B.至少有一个红球与都是白球
C.至少有一个红球与至少有一个白球
D.恰有一个红球与恰有二个红球
解析:选D 对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.
5.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( )
A.0.665 B.0.56
C.0.24 D.0.285
解析:选A ∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665,故选A.
6.掷一枚骰子,记A为事件“落地时向上的数是奇数”,B为事件“落地时向上的数是偶数”,C
5
为事件“落地时向上的数是3的倍数”.其中是互斥事件的是________,是对立事件的是________.
解析:A,B既是互斥事件,也是对立事件.
答案:A,B A,B
7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是________.
解析:摸出红球、白球、黑球是互斥事件,所以摸出黑球的概率是1-0.42-0.28=0.3.
答案:0.3
8.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率为________.
解析:因为事件A与事件B是互斥事件,
所以P(A∪B)=P(A)+P(B)=+=.
答案:
9.甲、乙两人下棋,和棋的概率为,乙获胜的概率为,求:
(1)甲获胜的概率;
(2)甲不输的概率.
解:(1)“甲获胜”和“和棋或乙获胜”是对立事件,所以“甲获胜”的概率P=1--=.
即甲获胜的概率是.
(2)法一:设事件A为“甲不输”,可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P(A)=+=.
法二:设事件A为“甲不输”,可看成是“乙获胜”的对立事件,所以P(A)=1-=.
即甲不输的概率是.
10.在数学考试中,小明的成绩在90分以上的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07,计算:
(1)小明在数学考试中取得80分以上成绩的概率;
(2)小明考试及格的概率.
5
解:记小明的成绩“在90分以上”“在80分~89分”“在70分~79分”“在60分~69分”为事件A,B,C,D,这四个事件彼此互斥.
(1)小明成绩在80分以上的概率是P(A∪B)=P(A)+P(B)=0.18+0.51=0.69.
(2)法一:小明及格的概率是P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.18+0.51+0.15+0.09=0.93.
法二:小明不及格的概率为0.07,则小明及格的概率为1-0.07=0.93.
B级——综合能力提升
1.如果事件A,B互斥,记,分别为事件A,B的对立事件,那么( )
A.A∪B是必然事件 B.∪是必然事件
C.与一定互斥 D.与一定不互斥
解析:选B 用Venn图解决此类问题较为直观.如图所示,∪是必然事件,故选B.
2.根据湖北某医疗所的调查,某地区居民血型的分布为:O型52%,A型15%,AB型5%,B型28%.现有一血型为A型的病人需要输血,若在该地区任选一人,则此人能为病人输血的概率为( )
A.67% B.85%
C.48% D.15%
解析:选A O型血与A型血的人能为A型血的人输血,故所求的概率为52%+15%=67%.故选A.
3.下列各组事件中,不是互斥事件的是( )
A.一个射手进行一次射击,命中环数大于8与命中环数小于6
B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分
C.播种100粒菜籽,发芽90粒与发芽80粒
D.检验某种产品,合格率高于70%与合格率低于70%
解析:选B 对于B,设事件A1为平均分不低于90分,事件A2为平均分不高于90分,则A1∩A2为平均分等于90分,A1,A2可能同时发生,故它们不是互斥事件.
4.把电影院的4张电影票随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得4排1号”与事件“乙分得4排1号”是( )
A.对立事件 B.不可能事件
C.互斥但不对立事件 D.以上答案都不对
解析:选C “甲分得4排1号”与“乙分得4排1号”是互斥事件但不对立.
5
5.一个口袋内有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出不是红球的概率为________.
解析:设A={摸出红球},B={摸出白球},C={摸出黑球},则A,B,C两两互斥,A与为对立事件,
因为P(A+B)=P(A)+P(B)=0.58,P(A+C)=P(A)+P(C)=0.62,
P(A+B+C)=P(A)+P(B)+P(C)=1,所以P(C)=0.42,P(B)=0.38,P(A)=0.20,所以P()=1-P(A)=1-0.20=0.80.
答案:0.80
6.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________.
解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为+=.
答案:
7.在大小相同的5个球中,只有红色和白色两种球,若从中任取2个,全是白球的概率为0.3,求所取出的2个球中至少有1个红球的概率.
解:记事件A表示“取出的2个球中至少有1个红球”,事件B表示“取出的2个球全是白球”,则事件A与事件B互为对立事件,而事件B发生的概率为P(B)=0.3,所以事件A发生的概率为P(A)=1-P(B)=1-0.3=0.7.
8.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)抽取1张奖券中奖概率;
(3)抽取1张奖券不中特等奖或一等奖的概率.
解:(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,
∴P(A)=,P(B)==,P(C)==.
(2)设“抽取1张奖券中奖”为事件D,则
P(D)=P(A)+P(B)+P(C)=++=.
(3)设“抽取1张奖券不中特等奖或一等奖”为事件E,则
5
P(E)=1-P(A)-P(B)=1--=.
5
相关文档
- 2016届高考数学(理)大一轮复习达标训2021-06-105页
- 2020版高考数学一轮(新课改省份专用2021-06-105页
- 2016届高考数学(理)大一轮复习达标训2021-06-106页
- 2016届高考数学(理)大一轮复习达标训2021-06-105页
- 2016届高考数学(理)大一轮复习达标训2021-06-104页
- 2019-2020学年高中数学课时跟踪检2021-06-105页
- 高中数学人教a版选修4-1课时跟踪检2021-06-105页
- 2016届高考数学(理)大一轮复习达标训2021-06-1010页
- 2019-2020学年高中数学课时跟踪检2021-06-104页
- 高中数学人教a版选修4-1课时跟踪检2021-06-105页