- 245.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
规范答题示范——立体几何解答题
【典例 】 (12分)(2017·全国Ⅱ卷)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.
(1)证明:直线CE∥平面PAB;
(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.
[信息提取]
❶看到要证结论(1),联想到线面平行的判定定理;
❷看到线面角及所求二面角,想到建立坐标系,利用向量运算由线面角确定点M的位置,进而确定法向量求二面角的余弦值.
[规范解答]
(2)解 由已知得BA⊥AD,以A为坐标原点,的方向为x轴正方向,||为单位长度,建立如图所示的空间直角坐标系A-xyz,则
因为BM与底面ABCD所成的角为45°,
而n=(0,0,1)是底面ABCD的一个法向量,
所以|cos〈,n〉|=sin 45°,
[高考状元满分心得]
❶写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全.如第(1)问中BC∥AD,第(2)问中两向量的坐标.
❷写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第(1)问中一定要写出CE∥平面PAB证明过程中的三个条件,否则不得分;第(2)问中不写出公式cos〈n,m〉=而得出余弦值则要扣1分.
[解题程序]
第一步:由平面几何性质及公理4得CE∥BF;
第二步:根据线面平行的判定定理,证CE∥平面PAB;
第三步:建立空间坐标系,写出相应向量的坐标;
第四步:由线面角,向量共线求点M,确定M的位置;
第五步:求两半平面的法向量,求二面角的余弦值;
第六步:检验反思,规范解题步骤.
【巩固提升】 如图,在梯形EFBC中,EC∥FB,EF⊥BF,BF=EC=4,EF=2,A是BF的中点,AD⊥EC,D在EC上,将四边形AFED沿AD折起,使得平面AFED⊥平面ABCD,点M是线段EC上异于E,C的任意一点.
(1)当点M是EC的中点时,求证:BM∥平面AFED;
(2)当平面BDM与平面ABF所成的锐二面角的正弦值为时,求三棱锥E-BDM的体积.
(1)证明 取ED的中点N,连接MN,AN,
∵点M是EC的中点,∴MN∥DC,且MN=DC,
而AB∥DC,AB=DC,
∴MN綉AB,即四边形ABMN是平行四边形,
∴BM∥AN,又BM⊄平面ADEF,AN⊂平面ADEF,
∴BM∥平面ADEF.
(2)解 因为AD⊥CD,AD⊥ED,平面AFED⊥平面ABCD,平面AFED∩平面ABCD=AD,所以DA,DC,DE两两垂直.
以DA、DC、DE分别为x,y,z轴建立空间直角坐标系,
则A(2,0,0),B(2,2,0),C(0,4,0),E(0,0,2),M (0
相关文档
- 2019年高考数学练习题汇总填空题满2021-06-116页
- 2019年高考数学练习题汇总附加题满2021-06-113页
- 2019年高考数学练习题汇总解答题滚2021-06-116页
- 2019年高考数学练习题汇总小题提速2021-06-116页
- 2019年高考数学练习题汇总解答题滚2021-06-116页
- 2019年高考数学练习题汇总压轴小题2021-06-1110页
- 2019年高考数学练习题汇总2_三角函2021-06-116页
- 2019年高考数学练习题汇总2019届高2021-06-1138页
- 2019年高考数学练习题汇总2019届高2021-06-1121页
- 2019年高考数学练习题汇总高考解答2021-06-107页