- 204.57 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中数学难点 29 排列、组合的应用问题
排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有 1~2 道
排列组合题,考查排列组合的基础知识、思维能力.
●难点磁场
(★★★★★)有五张卡片,它们的正、反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与
9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?
●案例探究
[例 1]在∠AOB 的 OA 边上取 m 个点,在 OB 边上取 n 个点(均除 O 点外),连同 O 点
共 m+n+1 个点,现任取其中三个点为顶点作三角形,可作的三角形有( )
12
1
2
1
1112121
212121
1
21
1
CCC D.C CCCCCC.C
CCC.C B CCCA.C
nmnmnmmnnm
mnnmmnnm
命题意图:考查组合的概念及加法原理,属★★★★★级题目.
知识依托:法一分成三类方法;法二,间接法,去掉三点共线的组合.
错解分析:A 中含有构不成三角形的组合,如:C 1
1m C 2
n 中,包括 O、Bi、Bj;C 1
1n C 2
m 中,
包含 O、Ap、Aq,其中 Ap、Aq,Bi、Bj 分别表示 OA、OB 边上不同于 O 的点;B 漏掉△AiOBj;
D 有重复的三角形.如 C 1
m C 2
1n 中有△AiOBj,C 2
1m C 1
n 中也有△AiOBj.
技巧与方法:分类讨论思想及间接法.
解法一:第一类办法:从 OA 边上(不包括 O)中任取一点与从 OB 边上(不包括 O)中任取
两点,可构造一个三角形,有 C 1
m C 2
n 个;第二类办法:从 OA 边上(不包括 O)中任取两点与
OB 边上(不包括 O)中任取一点,与 O 点可构造一个三角形,有 C 2
m C 1
n 个;第三类办法:从
OA 边上(不包括 O)任取一点与 OB 边上(不包括 O)中任取一点,与 O 点可构造一个三角形,
有 C C 个.由加法原理共有 N=C C +C C +C C 个三角形.
解法二:从 m+n+1 中任取三点共有 C 3
1nm 个,其中三点均在射线 OA(包括 O 点),有
C 3
1m 个,三点均在射线 OB(包括 O 点),有 C 3
1n 个.所以,个数为 N=C -C 3
1m -C 3
1n 个.
答案:C
[例 2]四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总
数是_________.
命题意图:本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学
问题的能力,属★★★★级题目.
知识依托:排列、组合、乘法原理的概念.
错解分析:根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而
后将剩的一人送到一所学校,故有 3A 3
4 种.忽略此种办法是:将同在一所学校的两名学生按
进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序
要求的.
技巧与方法:解法一,采用处理分堆问题的方法.解法二,分两次安排优等生,但是进
入同一所学校的两名优等生是不考虑顺序的.
解法一:分两步:先将四名优等生分成 2,1,1 三组,共有 C 2
4 种;而后,对三组学生
安排三所学校,即进行全排列,有 A3
3 种.依乘法原理,共有 N=C 2
4
3
3A =36(种).
解法二:分两步:从每个学校至少有一名学生,每人进一所学校,共有 A 3
4 种;而后,
再将剩余的一名学生送到三所学校中的一所学校,有 3 种.值得注意的是:同在一所学校的
两名学生是不考虑进入的前后顺序的.因此,共有 N= 2
1 A ·3=36(种).
答案:36
●锦囊妙记
排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这
类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以
位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出
排列或组合数,再减去不符合要求的排列数或组合数.前两种方式叫直接解法,后一种方式
叫间接解法.
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答.
解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素
分析法和位置分析法;插空法和捆绑法等八种.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
●歼灭难点训练
一、填空题
1.(★★★★)从集合{0,1,2,3,5,7,11}中任取 3 个元素分别作为直线方程 Ax+By+C=0
中的 A、B、C,所得的经过坐标原点的直线有_________条(用数值表示).
2.(★★★★★)圆周上有 2n 个等分点(n>1),以其中三个点为顶点的直角三角形的个数
为_________.
二、解答题
3.(★★★★★)某人手中有 5 张扑克牌,其中 2 张为不同花色的 2,3 张为不同花色的 A,
有 5 次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?
4.(★★★★)二次函数 y=ax2+bx+c 的系数 a、b、c,在集合{-3,-2,-1,0,1,2,
3,4}中选取 3 个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?
5.(★★★★★)有 3 名男生,4 名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边位置.
(2)全体排成一行,其中甲不在最左边,乙不在最右边.
(3)全体排成一行,其中男生必须排在一起.
(4)全体排成一行,男、女各不相邻.
(5)全体排成一行,男生不能排在一起.
(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
(7)排成前后二排,前排 3 人,后排 4 人.
(8)全体排成一行,甲、乙两人中间必须有 3 人.
6.(★★★★★)20 个不加区别的小球放入编号为 1、2、3 的三个盒子中,要求每个盒内
的球数不小于它的编号数,求不同的放法种数.
7.(★★★★)用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相
邻部分涂不同色,则涂色的方法共有几种?
8.(★★★★)甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不
值周六,则可排出不同的值班表数为多少?
参考答案
难点磁场
解:(间接法):任取三张卡片可以组成不同三位数 C 3
5 ·23·A 3
3 (个),其中 0 在百位的
有 C 2
4 ·22·A 2
2 (个),这是不合题意的,故共有不同三位数:C ·23·A -C ·22·A =432(个).
歼灭难点训练
一、1.解析:因为直线过原点,所以 C=0,从 1,2,3,5,7,11 这 6 个数中任取 2 个
作为 A、B 两数的顺序不同,表示的直线不同,所以直线的条数为 A 2
6 =30.
答案:30
2.解析:2n 个等分点可作出 n 条直径,从中任选一条直径共有 C 1
n 种方法;再从以下的
(2n-2)个等分点中任选一个点,共有 C 1
22 n 种方法,根据乘法原理:直角三角形的个数为:
C ·C =2n(n-1)个.
答案:2n(n-1)
二、3.解:出牌的方法可分为以下几类:
(1)5 张牌全部分开出,有 A 5
5 种方法;
(2)2 张 2 一起出,3 张 A 一起出,有 A 2
5 种方法;
(3)2 张 2 一起出,3 张 A 一起出,有 A 4
5 种方法;
(4)2 张 2 一起出,3 张 A 分两次出,有 C 2
3 A 3
5 种方法;
(5)2 张 2 分开出,3 张 A 一起出,有 A 种方法;
(6)2 张 2 分开出,3 张 A 分两次出,有 C A 种方法.
因此,共有不同的出牌方法 A +A +A +A A +A +C A =860 种.
4.解:由图形特征分析,a>0,开口向上,坐标原点在内部 f(0)=c<0;a<0,开口向下,
原点在内部 f(0)=c>0,所以对于抛物线 y=ax2+bx+c 来讲,原点在其内部 af(0)=ac<0,
则确定抛物线时,可先定一正一负的 a 和 c,再确定 b,故满足题设的抛物线共有
C 1
3 C 1
4 A 2
2 A 1
6 =144 条.
5.解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选
择.有 A 1
3 种,其余 6 人全排列,有 A 6
6 种.由乘法原理得 A A =2160 种.
(2)位置分析法.先排最右边,除去甲外,有 A 种,余下的 6 个位置全排有 A 种,但应
剔除乙在最右边的排法数 A 1
5 A 5
5 种.则符合条件的排法共有 A 1
6 A -A 1
5 A =3720 种.
(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有 A 3
3 A 5
5 =720
种.
(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有 A 3
3 A 4
4 =144 种.
(5)插空法.先排女生,然后在空位中插入男生,共有 A A 3
5 =1440 种.
(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为 N,第二步,对甲、
乙、丙进行全排列,则为七个人的全排列,因此 A 7
7 =N×A 3
3 ,∴N= 3
3
7
7
A
A = 840 种.
(7)与无任何限制的排列相同,有 A =5040 种.
(8)从除甲、乙以外的 5 人中选 3 人排在甲、乙中间的排法有 A 种,甲、乙和其余 2 人
排成一排且甲、乙相邻的排法有 A 2
3 A 3
3 .最后再把选出的 3 人的排列插入到甲、乙之间即可.
共有 A 3
5 ×A 2
2 ×A =720 种.
6.解:首先按每个盒子的编号放入 1 个、2 个、3 个小球,然后将剩余的 14 个小球排成
一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有 15 个空档,其中“O”表示小球,“|”表示
空档.将求小球装入盒中的方案数,可转化为将三个小盒插入 15 个空档的排列数.对应关系
是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧
的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于
是,若有两个小盒插入最左侧空档,有 C 2
3 种;若恰有一个小盒插入最左侧空档,有 1
3
1
3CC 种;
若没有小盒插入最左侧空档,有 C 2
13种.由加法原理,有 N= 2
13
1
13
1
3
2
3 CCCC =120 种排列方
案,即有 120 种放法.
7.解:按排列中相邻问题处理.(1)(4)或(2)(4).可以涂相同的颜色.分类:若(1)(4)同色,有
A 3
5 种,若(2)(4)同色,有 A 3
5 种,若(1)(2)(3)(4)均不同色,有 A 4
5 种.由加法原理,共有
N=2A +A =240 种.
8.解:每人随意值两天,共有 C 2
6 C 2
4 C 2
2 个;甲必值周一,有 C 1
5 C C 个;乙必值周六,
有 C 1
5 C C 个;甲必值周一且乙必值周六,有 C 1
4 C 1
3 C 个.所以每人值两天,且甲必不值
周一、乙必不值周六的值班表数,有 N=C C C -2C C C + C C C =90-2×5×
6+12=42 个.