• 89.50 KB
  • 2021-06-15 发布

高考数学复习练习试题2_4指数与指数函数

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎§2.4 指数与指数函数 一、填空题(本大题共9小题,每小题6分,共54分)‎ ‎1.(2010·扬州一模)下列等式=2a;=;-3=中一定成立的有________个.‎ ‎2.把函数y=f(x)的图象向左、向下分别平移2个单位长度得到函数y=2x的图象,则f(x)=__________.‎ ‎3.设f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-3,则f(-2)=________.‎ ‎4.若函数f(x)= (a为常数)在定义域上为奇函数,则a的值为________.‎ ‎5.(2010·安徽改编)设a=,b=,c=,则a,b,c的大小关系是____________.‎ ‎6.(2010·徐州模拟)已知函数f(x)=|2x-1|,af(c)>f(b),则下列结论中,一定成立的是________.‎ ‎①a<0,b<0,c<0; ②a<0,b≥0,c>0;‎ ‎③2-a<2c; ④2a+2c<2.‎ ‎7.若指数函数y=ax 在[-1,1]上的最大值与最小值的差是1,则底数a=________.‎ ‎8.函数f(x)=(a>1)恒过点(1,10),则m=________.‎ ‎9.(2010·南通调研)设函数f(x)=a-|x| (a>0且a≠1),若f(2)=4,则f(-2)与f(1)的大小关系是__________.‎ 二、解答题(本大题共3小题,共46分)‎ ‎10.(14分)(1)计算:[-0.5+(0.008)÷(0.02)×(0.32)]÷0.062 50.25;‎ ‎(2)化简:÷×(式中字母都是正数)‎ ‎11.(16分)已知对任意x∈R,不等式>恒成立,求实数m的取值范围.‎ ‎12.(16分)已知函数f(x)=满足f(c2)=.‎ ‎(1)求常数c的值;(2)解不等式f(x)>+1.‎ 答案 ‎1.0 2.2x-2+2 3.-1 4.±1 ‎ ‎5.a>c>b 6.④ 7. 8.9 9.f(-2)>f(1)‎ ‎10.解 (1)原式=÷ ‎=÷ ‎=×2=.‎ ‎(2)原式=÷×‎ ‎=a (a-2b)××‎ ‎=a×a×a=a2.‎ ‎11.解 由题知:不等式>对x∈R恒成立,‎ ‎∴x2+x<2x2-mx+m+4对x∈R恒成立.‎ ‎∴x2-(m+1)x+m+4>0对x∈R恒成立.‎ ‎∴Δ=(m+1)2-4(m+4)<0.‎ ‎∴m2-2m-15<0.∴-3+1得 当0+1,∴+1,∴≤x<.‎ 综上可知,+1的解集为.‎